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Abstract

Gravitational waves contain information about the properties of the binary black holes (BBHs) that
produce them, such as their masses and spins. With 69 confident (FAR < 1 yr−1) BBHs in the third
Gravitational Wave Transient Catalog (GWTC-3), it becomes possible to deduce bulk population
properties of merging black holes (BHs) and hence probe their formation origins. Recent theoretical
work has suggested that it is possible for the second-evolved BH to attain non-zero spin via tidal
forces, and that this spin should be correlated with its mass. We construct a simple heuristic
model that correlates the mass and spin of the higher-spinning BH. We evaluate its validity as a
probe of the field formation scenario by hierarchically analyzing mock BBH detections drawn from
an astrophysical distribution. We show that the model mis-specification from assuming a simple
linear correlation can lead to the misleading conclusion that the underlying distribution broadens
as we move farther away from the pivot mass. Finally, we also fit these models to GWTC-3 data.

1 Introduction

Gravitational waves (GWs)—first prediced by Einstein shortly after his introduction of General
Relativity but at the time predicted to be unobservable—are propagating perturbations in the
spacetime metric. In 2015, they were directly detected by the Laser Interferometer Gravitational-
wave Observatory (LIGO) [1]. Since gravitational waves are produced by a time-varying mass
quadrupole moment, thus far only merging binary compact objects (BHs and neutron stars) have
produced gravitational waves detectable by our current gravitational wave experiments LIGO and
Virgo [3]. Nonetheless, this has opened up an entirely new field of GW astronomy. With the third
LIGO-Virgo GW Transient Catalog (GWTC-3), we have now O(100) detections of gravitational
waves, most of which are BBHs. It is now possible to not only infer individual source properties,
but also to probe the underlying population from which these BBHs arise, placing constraints on
models of stellar evolution and astrophysics. Interesting population properties that can be probed
with the GW dataset include the shape of the BH mass distribution [28, 2], the BH spin distribution
[27, 8, 14, 34, 2], the distribution of BBHs across the sky [23], the evolution of merger rate and
other properties with redshift [13, 8, 2], correlations between properties such as mass and spin [8,
15, 35, 5, 2, 19], and even branching ratios between different BBH formation channels [36, 18, 33,
24].
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Such analyses are usually done with a method called hierarchical Bayesian inference. BBH
systems are completely described by 15 parameters: two characterizing the mass of each BH, six
characterizing the 3D spin vectors of each BH, and seven extrinsic parameters that describe the sky
location, distance, and orientation of the system. However, these parameters cannot be extracted
straightforwardly from the GW strain data; for example, the majority of the spin information
we obtain from a detection is from a measurement of the effective dimensionless spin parameter
(χeff), which is a mass-weighted combination of the spin magnitude projected onto the orbital
angular momentum, since it is included in the leading-order term in the post-Newtonian expansion
of the GW strain from a BBH merger. Furthermore, there exist degeneracies between some of the
parameters. In the GW literature, these parameters are extracted using the strain data from each
system using Bayesian inference in a process called parameter estimation (PE). Therefore, what we
have for each detection is not an exact measurement of any parameter, but rather a 15-dimensional
posterior distribution describing the probability that the system has a certain set of parameters,
given the detected signal. It is these posterior distributions that are then used to infer properties
of the underlying population. One can then choose an astrophysically-motivated parameterization
of the population and fit the posterior samples to the model in another layer of Bayesian inference
in a process called hierarchical Bayesian analysis, the output of which is a posterior distribution on
the value of the population parameters; it is also possible to compare the likelihoods between the
models to discern which one is more favored by the data. Analyses using flexible approaches (e.g.
splines, Gaussian processes), which have the advantage of not being less model-dependent, have
also been explored. See [32] for a pedagogical introduction to both PE and hierarchical inference
in the context of GW astronomy.

One of the primary goals of hierarchical inference in GW astronomy is to learn about the
formation origins of the detected BBHs. Several different formation mechanisms have been explored
in the literature, each of which have different signatures in BBH parameter space, subject to
modelling uncertainties. These formation channels can be roughly grouped into two categories:
dynamical formation channels, which involve BBHs formed via random dynamical capture in dense
stellar environments, and field channels, which involve the isolated co-evolution of a binary star
system. Recent literature has suggested that while BHs born in isolation have close to zero spin due
to efficient angular momentum transport out of the system during the core-collapse supernova [17],
BBHs formed via field channels have the potential to be spun up via tidal excitations of oscillation
modes in the secondary star by the BH companion [6]. This tidal spin-up is more efficient in lower
mass systems, leading to a negative correlation between the mass and the spin magnitude of the
spun-up secondary. Hierarchical mergers in dynamical channels, involving the mergers of merger
remnants, also have a mass-spin correlation, as the 2nd-generation component should have both a
higher mass and a characteristic high spin magnitude of around a ∼ 0.7 [18]. Additionally, there
are detections in our current catalog with extreme mass-spin properties that are difficult to explain
via isolated evolution [35].

In this project, we probe mass-spin correlations in GW observations of BBHs with simple,
heuristic linear models, similar to the models of [10, 8]. The goal of this project is to investigate
the effectiveness and inherent biases of such a model to recover the correlations of the more com-
plex astrophysical correlations given in [6], as well as the effect of contamination by hierarchical
mergers of dynamically formed BBHs on this analysis. To do so, we draw simulated BBHs from
an astrophysical distribution and inject them into the noise of various future detectors to create a
mock catalog which we then analyze with hierarchical Bayesian inference. Finally, we also perform
this inference on GWTC-3 data.

The structure of this paper will be as follows. In Section 2, we describe the models that we use.
In Section 3, we describe our implementation of hierarchical Bayesian inference and our method
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for drawing injected BBHs. We present our results in Section 4 and conclude in Section 6.

2 Models

In the standard literature, labels for each BH are assigned based on mass-sorting, i.e. m1 and a1 are
the mass and spin of the BH with greater mass, while m2 and a2 correspond to the secondary BH.
In our models, we employ the spin-sorting method pioneered by [7], such that mA and aA refer to
the higher-spinning BH while mB and aB refer to the lower-spinning BH, such that aA > aB. We
use this approach because we would like to target the correlation between the mass and spin of the
star that is spun-up. While models suggest that this should be the secondary BH, it is possible that
the second mass-transfer phase can result in mass ratio reversals. Additionally, many BBH systems
have mass ratios close to unity, which makes it difficult to discern which is truly the secondary
star. Furthermore, this approach is more agnostic towards the mechanism behind the mass-spin
correlation and simply targets a correlation between the mass and spin of the higher-spinning star.

In all of our models, we use the source-frame masses. We use the Power Law + Peak model
[28] to model the masses and a power law model [13] for the redshift; there are 9 hyperparameters
across both models. We simultaneously fit both models with a spin distribution. Due to the
limited data quality and number of current detections, we only allow for a linear dependence of
the spin on the masses. Assuming that the majority of the detected BBHs originate from the
field, this should capture, to first order, the correlation described in the previous section. In the
following subsections, we lay out the different spin models which we employ, all of which model
spin parameters as truncated Gaussians with log standard deviations and means allowed to vary
linearly as a function of mass, as in [10, 8].

2.1 aA spin model

The first model, which we call a A, is astrophysically motivated and specifically targets the correla-
tion between the mass and spin of the spun-up star described in [21]. We model aA as a Gaussian
truncated on [0, 1] that is allowed to vary linearly with mA, and model aB as a Gaussian truncated
on [0, aA] (hence enforcing the condition aA > aB) with a mean fixed at 0 and standard deviation
that we fit for:

π(aA |Λ,mA) = N (aA; µA(mA,Λ), 10
log σA(mA,Λ), 0, 1) (1)

π(aB |Λ, aA) = N (aB; 0, σB, 0, aA) (2)

where N (x; µ, σ, c, d) is a Gaussian on x truncated on [c, d] with mean µ and standard deviation
σ, Λ = [µA0, δµ,AA, log σA0, δlog σ,AA, σB] are the 5 spin hyperparameters, and

µA(mA,Λ) = µA0 + δµ,AA

(
mA

10M⊙
− 1

)
(3)

log σA(mA,Λ) = log σA0 + δlog σ,AA

(
mA

10M⊙
− 1

)
. (4)

The aB model models the star which is not tidally spun up; it is motivated by the finding that
BHs born in isolation have close to zero spin [17] due to efficient angular momentum transport. We
fit for σB to allow for spin from sources such as supernova kicks or angular momentum transport
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that is not perfectly efficient. We additioally enforce the following conditions on the truncated
Gaussian:

N (x; µ, σ, c, d) =

{
0 if σ < 10−3 or µ /∈ [c− 3σ, d+ 3σ]

G(µ, σ, c, d) otherwise
, (5)

where G(µ, σ, c, d) is an ordinary Gaussian truncated on [c, d]. We enforce this cutoff to prevent
infeasibly narrow Gaussians and models that peak significantly outside the bounds, which lead to
numerical difficulties and have ambiguous physical interpretations.

2.2 χeff spin model

Because spin magnitudes are not measured precisely, we probe the same correlation using the effec-
tive dimensionless spin parameter χeff , the mass-weighted average of the spin component aligned
with the orbital angular momentum, which is measured with much greater certainty. If we assume,
as in our astrophysical models, that only the spun-up star has significant spin, then χeff is a good
proxy for aA. This model, which we call chieff, models χeff as a Gaussian on [−1, 1] that is again
allowed to vary linearly with mA:

π(χeff |Λ,mA) = N (χeff ; µ(mA,Λ), 10
log σ(mA,Λ),−1, 1) (6)

µ(mA,Λ) = µ0 + δµ

(
mA

10M⊙
− 1

)
(7)

log σ(mA,Λ) = log σ0 + δlog σ

(
mA

10M⊙
− 1

)
. (8)

We enforce a similar cutoff as in Equation 5, except we set N (χeff) = 0 when µ /∈ [−1, 1]. This
model has 4 spin hyperparameters, Λ = [µ0, δµ, log σ0, δlog σ].

2.3 Alternate χeff spin models

Finally, we explore two alternative models for χeff . The model is the same as the chieff model,
but we instead allow χeff to vary with the total mass mtot (chieff totalmass) and the primary
mass m1 (chieff m1). The chieff m1 model is identical to one of the models explored in [8], and
we include this model as a test of validation for our results.

The equations governing this model are identical to Equations 6-8, except the chieff totalmass

model has a pivot mass of mtot = 20M⊙, such that

µ(mtot,Λ) = µ0 + δµ

(
mtot

20M⊙
− 1

)
(9)

log σ(mtot,Λ) = log σ0 + δlog σ

(
mtot

20M⊙
− 1

)
. (10)

3 Method

To perform the hierarchical inference, we use the Python hierarchical inference code gwpopulation
[29], with the dynesty nested sampler [25] as implemented by bilby [4].
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To create a simulated BBH catalog, we assume perfect detections, such that we have one
posterior sample per event without error, and no selection effects. This assumption of perfect
detections is reasonable to what we could expect from 3rd-generation (3G) detectors [20]. Therefore,
we perform hierarchical inference with no selection effects and a flat PE prior. We draw N = 1000
events for each mock catalog. We opt to leave out fitting the redshift distribution for simplicity, as
it is independent of other components of the model. To draw mA and mB, we first draw m1 and
m2 from the Power Law + Peak mass model. Then, we randomly assign m1 = mA (and m2 = mB)
with a probability of p = 20%, and correspondingly m1 = mB (and m2 = mA) with a probability
of 1−p = 80%. This is motivated by the idea that it is the secondary star which is tidally spun-up.

We begin as a test of validation by drawing directly from the a A and chieff mass1 models,
then performing hierarchical inference with those corresponding models. We pick true values of
the hyperparameters and draw N = 1000 events from the resulting model distribution to make our
mock catalog.
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Figure 1: A scatter plot of the mass-spin correlations in our mock BBH catalog. (a) plots the spin
magnitude (aA) as a function of the mass (mA) of the higher spinning star; the black line shows the
relationship parameterized by Equation 11, along with the 90% confidence intervals of the Gaussian
noise (corresponding to ±1.6σ = ±0.16). (b) plots the effective spin parameter of the simulated
BBH system (χeff) as a function of the mass of the higher spinning star (mA).

Next, we create a mock catalog with mass-spin correlations drawn from a distribution motivated
by Figure 8 of [6]. We parameterize this distribution with the relation

aA(mA) =
A exp(−BmA)

1 + exp(−K(mA −m0))
+ C. (11)

We use values A = 3, B = 0.2, K = 0.5, m0 = 5, and C = 0.25, which approximately matches
a BBH progenitor system with sub-solar metallicity and an initial period of 0.3 days. We draw
N = 1000 values of mA and mB with the method described above. We assign values of aA by
implementing 11 and adding Gaussian noise with standard deviation 0.1, in order to model the
assumption that the universe does not have a one-to-one mapping of this correlation. We assign
values of aB by drawing from a Gaussian truncated on [0, aA] centered at 0 with a true value of
σB = 0.05. To ensure that aA ∈ [0, 1], we set all points with aA > 1 to aA = 1, and all points with
aA ≤ 0 to points drawn from a Gaussian truncated on [0, 1] centered at 0 with standard deviation
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0.05, such that stars which are not tidally spun up are drawn from a distribution identical to the
aB distribution, which represents the spin distribution of BHs born without tidal spin-up.

We fit both the a A and chieff models to this mock catalog. To assign a value of χeff to each
mock observation, we must additionally model the spin tilt distribution, where the tilt angle θ
for each BH is defined as the angle between the BH’s angular momentum and the orbital angular
momentum. We assign values of cos θA and cos θB by independently drawing from a Gaussian
truncated on [−1, 1] with mean 1 and standard deviation 0.2, to capture the expectation that the
BH spins will be aligned with the orbital angular momentum in isolated evolutionary channels. We
can then calculate χeff with

χeff =
mA cos θA +mB cos θB

mA +mB
. (12)

Figure 1 shows a scatter plot of this mock catalog, illustrating the mass spin correlations.

4 Injection Results

First, we are able to correctly recover the true values of the hyperparameters within the 90%
symmetric credible interval when we perform hierarchical inference on mock BBHs drawn directly
from the a A and chieff m1 models with the corresponding models. Figure 2 shows the trace
plots and 90% credible intervals of the posterior variation of the spin Gaussian mean and width
with mass. No correlation is found in the absence of a true correlation, and a correlation (of the
correct magnitude) is found in the presence of a true correlation, demonstrating the validity of our
analysis. We still note, however, that caution must be used in any such hierarchical inference of a
finite number of detections; biased realizations of the mock catalog from the small number statistics
of the high mass tail of the BBH distribution can lead to incorrect recoveries of the hyperparameters
of the true underlying distribution. Although not shown in Figure 2, we also correctly recover the
true value of σB = 0.2, the width of the aB distribution, which represents the distribution of spins
of BHs which do not experience tidal spin-up.

Next, we hierarchically analyze with the a A model the mock catalog illustrated in Figure 1,
which is drawn from an astrophysically-motivated distribution. Here, the model is mis-specified:
the model which we fit to the data is different from the true underlying model. The corner plot
of the hyperparameters along with the 90% confidence intervals are given in Figure 3(c). The true
value of σB = 0.2, which is reasonably close to the recovered value given the mis-specification
of the aA model. As shown in Figure 3(a), we recover with 90% confidence non-zero variation
of the aA Gaussian mean as a function of mA. Therefore, under this model for the underlying
astrophysical distribution with perfect detections, a linear correlation is sufficient to detect the
mass-spin correlations encoded in tidal spin up. The linear correlation which we recover appears to
be consistent with the true mean of the aA distribution at a given mA, given by the green dotted
line. The hyperposterior also favors a spin distribution that broadens with mA, as shown with
the increasing Gaussian width with mA in Figure 3(b). This is likely a consequence of the model
mis-specification. The linear model is anchored on the pivot point of mA = 10M⊙, which was
chosen to be near where most BBHs are located in parameter space. Because the true underlying
distribution is non-linear, the true correlation deviates from the linear model as we move away
from the pivot point, forcing the Gaussian to broaden to accommodate the mock detections at high
mA. This is then a generic feature of fitting a Gaussian whose width and mean is allowed to vary
linearly to data with a non-linear correlation and fewer points away from the pivot point. This
implies a caveat when viewing previous results which have found broadening distributions of BBH
parameters with mass (e.g. [8]).
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5 Inference on GWTC-3 data

We perform hierarchical inference on the 69 BBHs in the GWTC-3 catalog with False Alarm
Rate (FAR) < 1 yr−1 [2] for each model. We use the C01:IMRPhenomXPHM datasets from the
publicly-released individual event posterior samples published in the GWTC-2.1 [30] and GWTC-3
[31] data releases. We calculate the PE prior at the posterior sample points analytically, using the
Jacobian developed by [9] to transform from a flat isotropic spin prior to a prior in χeff . To account
for selection effects, we use the method described in [12] to compute the selection term α(Λ). We
use the search sensitivity samples from the publicly-released simulated injection campaign [11], and
consider a sample found using the same criteria as the GWTC-3 data release, i.e. if the optimal
SNR ρopt > 10 for O1 and O2, or if FARmin < 1 yr−1 for O3, where FARmin is the minimum FAR
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Figure 2: The results of the a A (first row) and chieff totalmass (second row) models on a mock
catalog of N = 1000 events with no noise or selection effects, showing the mean (a, c) and log
standard deviation (b, d) of the aA and χeff truncated Gaussians as a function of mA and m1,
respectively. Solid black lines show the median and 90% symmetric credible intervals, faded gray
lines show trace plots of 200 random samples from the hyperposterior, and the green line shows the
true mass-spin correlation. For all analyses, the true variation of the mean and standard deviation
with mass is recovered within the 90% credible interval.
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Figure 3: The results of the a A model on the mock catalog in Figure 1 showing the mean (a) and
log standard deviation (b) of the aA truncated Gaussian as a function of mA. As in Figure 2, the
solid black lines show the median and 90% credible intervals. The green dotted line in (a) show
the true mean of the underlying distribution given by Equation 11. In (c), we show the corner plot
of the hyperparameters.
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Figure 4: The mean (a) and log standard deviation (b) of the χeff truncated Gaussian for all three
models, chieff, chieff totalmass, and chieff mass1, on GWTC-3 data as a function of mA,
mtot, and m1, respectively. Solid lines show the median and 90% symmetric credible intervals. We
find no evidence of any variation of χeff with mA, mtot, or m1.

across all search pipelines.
We have found that there can be significant regions of parameter space that have a very low

number of effective Monte-Carlo samples (Neff), especially at negative values of δ log σ, whose
narrow Gaussians are poorly sampled from the individual event χeff posteriors. To remedy this
issue, we assign a likelihood of 0 to regions of parameter space with Neff < N , where N is
the number of events, and switch from using C01:Mixed to C01:IMRPhenomXPHM PE samples
for our analysis of GWTC-3 data in order to have more samples. We implement this with the
MinimumEffectiveSamplesLikelihood class from gwpopulation pipe [26], the interface package
to gwpopulation. This effect is important in the hierarchical inference with the a A model. For
reasonable values of µaA ≈ 0.1−0.4, Neff ∼ O(1) for all non-positive values. Because the likelihood
is set to 0 in that region of parameter space, the posterior aA distribution is forced to broaden with
mA. Therefore, it is currently not possible to reliably probe the a A model parameter space with
the given set of GWTC-3 PE samples.

Figure 4 shows the posterior mean and log standard deviation of the χeff truncated Gaussian as
a function of mA, mtot, and m1, from inference with the chieff, chieff totalmass, chieff mass1

models, respectively. Consistent with the results of [8], we find no evidence of χeff varying as a
function of mass for any of our models. The χeff distribution likely peaks at a small, positive
number, also consistent with the results of [2].

6 Conclusion and Next Steps

In this project, we construct several models that target the mass-spin correlation expected from
the tidal spin-up of BBH progenitor systems. While models that look for a correlation between
χeff and mass are present in the current literature, we present a novel use of the spin-sorting
method pioneered by [7] to look for correlations between the spin magnitude (aA) and mass (mA)
of the tidally spun-up star. These models only look for a first-order linear correlation, as has been
done previously in the literature when looking for correlations between BBH parameters, and are
therefore agnostic to the true shape of the correlation. We demonstrate the validity of performing
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hierarchical inference with these models with a simplified injection study. We then investigate the
recovery of a correlation with a non-linear shape, motivated by the modelling results of [21]. We
find that a non-correlation is excluded with 90% confidence, and that the correlation we do recover
is consistent with the injected distribution. Furthermore, we find that the broadening of the spin
distribution Gaussian with mass can be a feature of model mis-specification, rather than a result
of true broadening. We also perform hierarchical inference on GWTC-3 data with these models.
We are unable to probe the full parameter space of the a A model due to an insufficient number of
effective PE samples, and we find no evidence of a correlation of χeff with mass.

The immediate next step of this project is to better model the mass-spin correlation in tidally
spun-up BBH merger systems. In this work, we picked a distribution that roughly matched the
result from a single value of the initial orbital period Porb, i, rather than including a range of initial
periods. To add the dimension of initial period into our model, we have created the following
analytic approximation for the BH spin that results from tidal spin-up, aTSU:

aTSU(mA, Porb, i) =

{
ano TSU +A(Porb, i)

[
exp(−0.2mA/M⊙)

1+exp(−0.5(mA/M⊙−6))

]
+ C(Porb, i) if Porb, i < 1 day

ano TSU if Porb, i ≥ 1 day

(13)

where A(P ) = 6(1− P/day))2, C(P ) = 0.7(1− P/day))3. (14)

Here, ano TSU represents the natal BH spin in the absence of tidal spin-up. The lack of tidal
spin-up from systems with higher orbital periods and therefore larger orbital separations is also
supported by [6]. To model ano TSU, we use the model for aB, just without the enforcement that
aA > aB, since both represent the natal BH spin in the absence of tidal spin-up:

p(ano TSU|σB) = N1/2(ano TSU; 0, σB, 0, 1) (15)

whereN1/2(a; µ, σ, c, d) is a half-Gaussian with mean µ and standard deviation σ truncated on [c, d].
Therefore, we can model the correlation of aA with mA with the following probability distribution:

p(aA|mA, Porb, i, σB) = N1/2(aA; aTSU(mA, Porb, i), σB, 0, 1) (16)

It is then imperative to try to model the distribution of initial periods, p(Porb, i). Currently, the
idea is to model the distribution of zero-age main sequence (ZAMS) separations as a log-uniform
distribution [22], which can be converted to a distribution in Porb, i with Kepler’s 3rd law, given the
BBH massses. We can assume that little angular momentum is lost during the binary evolution
until the system becomes a BBH system, such that the ZAMS initial period is the same as the
initial period of the BBH progenitor system, which is what was used in [21]. We can choose a
cutoff for the minimum Porb, i in p(Porb, i) of 0.3 days. The maximum Porb, i, Pmax, is imposed by a
limit on the merger time. If the initial separation is too wide, it cannot have merged between the
redshift that that it formed and the redshift at which we observe it in the first place. For a given
initial period, we can approximate the merger delay time tmerge by using the quadrupole radiation
formula and assuming circular Keplerian orbits; the result is a power law dependence on the BH
masses and tmerge. Therefore, we can calculate Pmax by calculating the maximum delay time allowed
by the merger’s redshift (where the allowed delay time is limited by the Hubble time), weighting
with a model for the star formation rate, and calculating the initial period corresponding to tmerge

equal to that maximum delay time given the BH masses. Even in accounting for these astrophysical
selection effects, there are many assumptions going to this calculation, and the resulting correlation
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would still be subject to significant modelling uncertainties. Nonetheless, it would be interesting
to see the resulting mass-spin correlation of merging field BBHs from tidal spin-up.

The other immediate next step would be to make the mock BBH catalog more realistic. The
goal of this project is ultimately to make predictions for future detectors, from future observing
runs to 3G detectors. To do so, we will have to take into account the detection efficiencies and
detector noise of these future detectors.

The final, and arguably most interesting, extension of this project would be to investigate the
biases of this hierarchical inference that result from contamination from other sub-populations.
A sub-population of dynamical mergers, for example, could introduce a significant number of de-
tections with no mass-spin correlation, with a subset of hierarchical mergers with a mass-spin
correlation. We can model the astrophysical distribution with a mixing fraction of BBHs which do
not experience tidal spin-up and a mixing fraction of hierarchical mergers.

7 Acknowledgements

This work was supported by the National Science Foundation Research Experience for Undergrad-
uates (NSF REU) program, the LIGO Laboratory Summer Undergraduate Research Fellowship
program (NSF LIGO), and the California Institute of Technology Student-Faculty Programs. Ad-
ditionally, I would like to thank my advisors Jacob Golomb and Alan Weinstein for their invaluable
support and advice throughout my summer project.

References

[1] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black Hole Merger”.
In: Phys. Rev. Lett. 116.6, 061102 (Feb. 2016), p. 061102. doi: 10.1103/PhysRevLett.116.
061102. arXiv: 1602.03837 [gr-qc].

[2] R. Abbott et al. “Population of Merging Compact Binaries Inferred Using Gravitational
Waves through GWTC-3”. In: Physical Review X 13.1, 011048 (Jan. 2023), p. 011048. doi:
10.1103/PhysRevX.13.011048. arXiv: 2111.03634 [astro-ph.HE].

[3] F. Acernese et al. “Advanced Virgo: a second-generation interferometric gravitational wave
detector”. In: Classical and Quantum Gravity 32.2, 024001 (Jan. 2015), p. 024001. doi: 10.
1088/0264-9381/32/2/024001. arXiv: 1408.3978 [gr-qc].

[4] Gregory Ashton et al. “BILBY: A User-friendly Bayesian Inference Library for Gravitational-
wave Astronomy”. In: ApJS 241.2, 27 (Apr. 2019), p. 27. doi: 10.3847/1538-4365/ab06fc.
arXiv: 1811.02042 [astro-ph.IM].

[5] Vishal Baibhav, Zoheyr Doctor, and Vicky Kalogera. “Dropping Anchor: Understanding
the Populations of Binary Black Holes with Random and Aligned-spin Orientations”. In:
ApJ 946.1, 50 (Mar. 2023), p. 50. doi: 10.3847/1538-4357/acbf4c. arXiv: 2212.12113
[astro-ph.HE].

[6] Simone S. Bavera, Michael Zevin, and Tassos Fragos. “Approximations of the Spin of Close
Black Hole-Wolf-Rayet Binaries”. In: Research Notes of the American Astronomical Soci-
ety 5.5, 127 (May 2021), p. 127. doi: 10.3847/2515- 5172/ac053c. arXiv: 2105.09077
[astro-ph.HE].

11

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.1103/PhysRevX.13.011048
https://arxiv.org/abs/2111.03634
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://arxiv.org/abs/1408.3978
https://doi.org/10.3847/1538-4365/ab06fc
https://arxiv.org/abs/1811.02042
https://doi.org/10.3847/1538-4357/acbf4c
https://arxiv.org/abs/2212.12113
https://arxiv.org/abs/2212.12113
https://doi.org/10.3847/2515-5172/ac053c
https://arxiv.org/abs/2105.09077
https://arxiv.org/abs/2105.09077


[7] Sylvia Biscoveanu et al. “New Spin on LIGO-Virgo Binary Black Holes”. In: Phys. Rev. Lett.
126.17, 171103 (Apr. 2021), p. 171103. doi: 10.1103/PhysRevLett.126.171103. arXiv:
2007.09156 [astro-ph.HE].

[8] Sylvia Biscoveanu et al. “The Binary Black Hole Spin Distribution Likely Broadens with
Redshift”. In: ApJ 932.2, L19 (June 2022), p. L19. doi: 10.3847/2041-8213/ac71a8. arXiv:
2204.01578 [astro-ph.HE].

[9] T. A. Callister. “A Thesaurus for Common Priors in Gravitational-Wave Astronomy”. In:
arXiv e-prints, arXiv:2104.09508 (Apr. 2021), arXiv:2104.09508. doi: 10.48550 /arXiv.
2104.09508. arXiv: 2104.09508 [gr-qc].

[10] Thomas A. Callister et al. “Who Ordered That? Unequal-mass Binary Black Hole Mergers
Have Larger Effective Spins”. In: ApJ 922.1, L5 (Nov. 2021), p. L5. doi: 10.3847/2041-
8213/ac2ccc. arXiv: 2106.00521 [astro-ph.HE].

[11] LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration. GWTC-
3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of
the Third Observing Run — O1+O2+O3 Search Sensitivity Estimates. LIGO Laboratory
and Advanced LIGO are funded by the United States National Science Foundation (NSF)
as well as the Science and Technology Facilities Council (STFC) of the United Kingdom,
the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the
construction of Advanced LIGO and construction and operation of the GEO600 detector.
Additional support for Advanced LIGO was provided by the Australian Research Council.
Virgo is funded, through the European Gravitational Observatory (EGO), by the French
Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale di Fisica
Nucleare (INFN) and the Dutch Nikhef, with contributions by institutions from Belgium,
Germany, Greece, Hungary, Ireland, Japan, Monaco, Poland, Portugal, Spain. The construc-
tion and operation of KAGRA are funded by Ministry of Education, Culture, Sports, Science
and Technology (MEXT), and Japan Society for the Promotion of Science (JSPS), National
Research Foundation (NRF) and Ministry of Science and ICT (MSIT) in Korea, Academia
Sinica (AS) and the Ministry of Science and Technology (MoST) in Taiwan. Zenodo, May
2023. doi: 10.5281/zenodo.7890398. url: https://doi.org/10.5281/zenodo.7890398.

[12] Will M. Farr. “Accuracy Requirements for Empirically Measured Selection Functions”. In:
Research Notes of the American Astronomical Society 3.5, 66 (May 2019), p. 66. doi: 10.
3847/2515-5172/ab1d5f. arXiv: 1904.10879 [astro-ph.IM].

[13] Maya Fishbach, Daniel E. Holz, and Will M. Farr. “Does the Black Hole Merger Rate Evolve
with Redshift?” In: ApJ 863.2, L41 (Aug. 2018), p. L41. doi: 10.3847/2041-8213/aad800.
arXiv: 1805.10270 [astro-ph.HE].

[14] Maya Fishbach, Chase Kimball, and Vicky Kalogera. “Limits on Hierarchical Black Hole
Mergers from the Most Negative χ eff Systems”. In: ApJ 935.2, L26 (Aug. 2022), p. L26.
doi: 10.3847/2041-8213/ac86c4. arXiv: 2207.02924 [astro-ph.HE].

[15] Gabriele Franciolini and Paolo Pani. “Searching for mass-spin correlations in the population of
gravitational-wave events: The GWTC-3 case study”. In: Phys. Rev. D 105.12, 123024 (June
2022), p. 123024. doi: 10.1103/PhysRevD.105.123024. arXiv: 2201.13098 [astro-ph.HE].

[16] Gabriele Franciolini et al. “Searching for a subpopulation of primordial black holes in LIGO-
Virgo gravitational-wave data”. In: Phys. Rev. D 105.8, 083526 (Apr. 2022), p. 083526. doi:
10.1103/PhysRevD.105.083526. arXiv: 2105.03349 [gr-qc].

12

https://doi.org/10.1103/PhysRevLett.126.171103
https://arxiv.org/abs/2007.09156
https://doi.org/10.3847/2041-8213/ac71a8
https://arxiv.org/abs/2204.01578
https://doi.org/10.48550/arXiv.2104.09508
https://doi.org/10.48550/arXiv.2104.09508
https://arxiv.org/abs/2104.09508
https://doi.org/10.3847/2041-8213/ac2ccc
https://doi.org/10.3847/2041-8213/ac2ccc
https://arxiv.org/abs/2106.00521
https://doi.org/10.5281/zenodo.7890398
https://doi.org/10.5281/zenodo.7890398
https://doi.org/10.3847/2515-5172/ab1d5f
https://doi.org/10.3847/2515-5172/ab1d5f
https://arxiv.org/abs/1904.10879
https://doi.org/10.3847/2041-8213/aad800
https://arxiv.org/abs/1805.10270
https://doi.org/10.3847/2041-8213/ac86c4
https://arxiv.org/abs/2207.02924
https://doi.org/10.1103/PhysRevD.105.123024
https://arxiv.org/abs/2201.13098
https://doi.org/10.1103/PhysRevD.105.083526
https://arxiv.org/abs/2105.03349


[17] Jim Fuller and Linhao Ma. “Most Black Holes Are Born Very Slowly Rotating”. In: ApJ 881.1,
L1 (Aug. 2019), p. L1. doi: 10.3847/2041-8213/ab339b. arXiv: 1907.03714 [astro-ph.SR].

[18] Davide Gerosa and Maya Fishbach. “Hierarchical mergers of stellar-mass black holes and
their gravitational-wave signatures”. In: Nature Astronomy 5 (July 2021), pp. 749–760. doi:
10.1038/s41550-021-01398-w. arXiv: 2105.03439 [astro-ph.HE].

[19] Jaxen Godfrey, Bruce Edelman, and Ben Farr. “Cosmic Cousins: Identification of a Subpop-
ulation of Binary Black Holes Consistent with Isolated Binary Evolution”. In: arXiv e-prints,
arXiv:2304.01288 (Apr. 2023), arXiv:2304.01288. doi: 10.48550/arXiv.2304.01288. arXiv:
2304.01288 [astro-ph.HE].

[20] Francesco Iacovelli et al. “Forecasting the Detection Capabilities of Third-generation Gravitational-
wave Detectors Using GWFAST”. In: ApJ 941.2, 208 (Dec. 2022), p. 208. doi: 10.3847/1538-
4357/ac9cd4. arXiv: 2207.02771 [gr-qc].

[21] Linhao Ma and Jim Fuller. “Tidal Spin-up of Black Hole Progenitor Stars”. In: ApJ 952.1, 53
(July 2023), p. 53. doi: 10.3847/1538-4357/acdb74. arXiv: 2305.08356 [astro-ph.HE].

[22] Ilya Mandel and Alison Farmer. “Merging stellar-mass binary black holes”. In: Phys. Rep.
955 (Apr. 2022), pp. 1–24. doi: 10.1016/j.physrep.2022.01.003. arXiv: 1806.05820
[astro-ph.HE].

[23] Ethan Payne et al. “Searching for anisotropy in the distribution of binary black hole mergers”.
In: Phys. Rev. D 102.10, 102004 (Nov. 2020), p. 102004. doi: 10.1103/PhysRevD.102.102004.
arXiv: 2006.11957 [astro-ph.CO].

[24] April Qiu Cheng, Michael Zevin, and Salvatore Vitale. “What You Don’t Know Can Hurt
You: Use and Abuse of Astrophysical Models in Gravitational-wave Population Analyses”.
In: arXiv e-prints, arXiv:2307.03129 (July 2023), arXiv:2307.03129. doi: 10.48550/arXiv.
2307.03129. arXiv: 2307.03129 [astro-ph.HE].

[25] Joshua S. Speagle. “DYNESTY: a dynamic nested sampling package for estimating Bayesian
posteriors and evidences”. In: MNRAS 493.3 (Apr. 2020), pp. 3132–3158. doi: 10.1093/
mnras/staa278. arXiv: 1904.02180 [astro-ph.IM].

[26] Colm Talbot. “GWPopulation pipe”. In: (Nov. 2021). doi: 10.5281/zenodo.5654673. url:
https://git.ligo.org/RatesAndPopulations/gwpopulation_pipe.

[27] Colm Talbot and Eric Thrane. “Determining the population properties of spinning black
holes”. In: Phys. Rev. D 96.2, 023012 (July 2017), p. 023012. doi: 10.1103/PhysRevD.96.
023012. arXiv: 1704.08370 [astro-ph.HE].

[28] Colm Talbot and Eric Thrane. “Measuring the Binary Black Hole Mass Spectrum with an
Astrophysically Motivated Parameterization”. In: ApJ 856.2, 173 (Apr. 2018), p. 173. doi:
10.3847/1538-4357/aab34c. arXiv: 1801.02699 [astro-ph.HE].

[29] Colm Talbot et al. “Parallelized inference for gravitational-wave astronomy”. In: Phys. Rev. D
100.4, 043030 (Aug. 2019), p. 043030. doi: 10.1103/PhysRevD.100.043030. arXiv: 1904.
02863 [astro-ph.IM].

[30] The LIGO Scientific Collaboration et al. “GWTC-2.1: Deep Extended Catalog of Compact
Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Ob-
serving Run”. In: arXiv e-prints, arXiv:2108.01045 (Aug. 2021), arXiv:2108.01045. doi: 10.
48550/arXiv.2108.01045. arXiv: 2108.01045 [gr-qc].

13

https://doi.org/10.3847/2041-8213/ab339b
https://arxiv.org/abs/1907.03714
https://doi.org/10.1038/s41550-021-01398-w
https://arxiv.org/abs/2105.03439
https://doi.org/10.48550/arXiv.2304.01288
https://arxiv.org/abs/2304.01288
https://doi.org/10.3847/1538-4357/ac9cd4
https://doi.org/10.3847/1538-4357/ac9cd4
https://arxiv.org/abs/2207.02771
https://doi.org/10.3847/1538-4357/acdb74
https://arxiv.org/abs/2305.08356
https://doi.org/10.1016/j.physrep.2022.01.003
https://arxiv.org/abs/1806.05820
https://arxiv.org/abs/1806.05820
https://doi.org/10.1103/PhysRevD.102.102004
https://arxiv.org/abs/2006.11957
https://doi.org/10.48550/arXiv.2307.03129
https://doi.org/10.48550/arXiv.2307.03129
https://arxiv.org/abs/2307.03129
https://doi.org/10.1093/mnras/staa278
https://doi.org/10.1093/mnras/staa278
https://arxiv.org/abs/1904.02180
https://doi.org/10.5281/zenodo.5654673
https://git.ligo.org/RatesAndPopulations/gwpopulation_pipe
https://doi.org/10.1103/PhysRevD.96.023012
https://doi.org/10.1103/PhysRevD.96.023012
https://arxiv.org/abs/1704.08370
https://doi.org/10.3847/1538-4357/aab34c
https://arxiv.org/abs/1801.02699
https://doi.org/10.1103/PhysRevD.100.043030
https://arxiv.org/abs/1904.02863
https://arxiv.org/abs/1904.02863
https://doi.org/10.48550/arXiv.2108.01045
https://doi.org/10.48550/arXiv.2108.01045
https://arxiv.org/abs/2108.01045


[31] The LIGO Scientific Collaboration et al. “GWTC-3: Compact Binary Coalescences Observed
by LIGO and Virgo During the Second Part of the Third Observing Run”. In: arXiv e-prints,
arXiv:2111.03606 (Nov. 2021), arXiv:2111.03606. doi: 10.48550/arXiv.2111.03606. arXiv:
2111.03606 [gr-qc].

[32] Eric Thrane and Colm Talbot. “An introduction to Bayesian inference in gravitational-wave
astronomy: Parameter estimation, model selection, and hierarchical models”. In: PASA 36,
e010 (Mar. 2019), e010. doi: 10.1017/pasa.2019.2. arXiv: 1809.02293 [astro-ph.IM].

[33] L. A. C. van Son et al. “No Peaks without Valleys: The Stable Mass Transfer Channel for
Gravitational-wave Sources in Light of the Neutron Star-Black Hole Mass Gap”. In: ApJ
940.2, 184 (Dec. 2022), p. 184. doi: 10.3847/1538- 4357/ac9b0a. arXiv: 2209.13609
[astro-ph.HE].

[34] Salvatore Vitale, Sylvia Biscoveanu, and Colm Talbot. “Spin it as you like: The (lack of a)
measurement of the spin tilt distribution with LIGO-Virgo-KAGRA binary black holes”. In:
A&A 668, L2 (Dec. 2022), p. L2. doi: 10.1051/0004-6361/202245084. arXiv: 2209.06978
[astro-ph.HE].

[35] Michael Zevin and Simone S. Bavera. “Suspicious Siblings: The Distribution of Mass and
Spin across Component Black Holes in Isolated Binary Evolution”. In: ApJ 933.1, 86 (July
2022), p. 86. doi: 10.3847/1538-4357/ac6f5d. arXiv: 2203.02515 [astro-ph.HE].

[36] Michael Zevin et al. “One Channel to Rule Them All? Constraining the Origins of Binary
Black Holes Using Multiple Formation Pathways”. In: ApJ 910.2, 152 (Apr. 2021), p. 152.
doi: 10.3847/1538-4357/abe40e. arXiv: 2011.10057 [astro-ph.HE].

14

https://doi.org/10.48550/arXiv.2111.03606
https://arxiv.org/abs/2111.03606
https://doi.org/10.1017/pasa.2019.2
https://arxiv.org/abs/1809.02293
https://doi.org/10.3847/1538-4357/ac9b0a
https://arxiv.org/abs/2209.13609
https://arxiv.org/abs/2209.13609
https://doi.org/10.1051/0004-6361/202245084
https://arxiv.org/abs/2209.06978
https://arxiv.org/abs/2209.06978
https://doi.org/10.3847/1538-4357/ac6f5d
https://arxiv.org/abs/2203.02515
https://doi.org/10.3847/1538-4357/abe40e
https://arxiv.org/abs/2011.10057

	Introduction
	Models
	aA spin model
	eff spin model
	Alternate eff spin models

	Method
	Injection Results
	Inference on GWTC-3 data
	Conclusion and Next Steps
	Acknowledgements

