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Introduction

Gravitational waves (GWs)—first prediced by Einstein shortly after his introduction of Gen-
eral Relativity but at the time predicted to be unobservable—are propagating perturbations
in the spacetime metric. In 2015, they were directly detected by the Laser Interferometer
Gravitational-wave Observatory (LIGO) [1]. Since gravitational waves are produced by a
time-varying mass quadrupole moment, thus far only merging binary compact objects (black
holes and neutron stars) have produced gravitational waves detectable by our current grav-
itational wave experiments LIGO and Virgo. Nonetheless, this has opened up an entirely
new field of GW astronomy. With the third LIGO-Virgo GW transient catalog (GWTC-
3), we have now O(100) detections of gravitational waves, most of which are binary black
holes (BBHs). It is now possible to not only infer individual source properties, but also
to probe the underlying population from which these BBHs arise, placing constraints on
models of stellar evolution and astrophysics. Interesting population properties that can be
probed with the GW dataset include the shape of the black hole mass distribution [18, 2],
the black hole spin distribution [17, 7, 9, 22, 2], the distribution of BBHs across the sky [15],
the evolution of merger rate and other properties with redshift [8, 7, 2], correlations between
properties such as mass and spin [7, 10, 23, 4, 2, 13], and even branching ratios between
different BBH formation channels [24, 12, 21, 16].

Such analyses are usually done with a method called hierarchical Bayesian inference. BBH
systems are completely described by 15 parameters: two characterizing the mass of each black
hole, 6 characterizing the 3D spin vectors of each black hole, and seven extrinsic parameters
that describe the sky location, distance, and orientation of the system. However, these
parameters cannot be extracted straightforwardly from the GW strain data; for example,
the majority of the spin information we obtain from a detection is from a measurement of
the effective dimensionless spin parameter (χeff), which is a mass-weighted combination of
the spin magnitude projected onto the orbital angular momentum, since it is the leading-
order spin term in the post-Newtonian expansion of the strain. Furthermore, there exist
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degeneracies between some of the parameters. In the GW literature, these parameters are
extracted for each system using Bayesian inference in a process called parameter estimation
(PE). Therefore, what we have for each detection is not an exact measurement of any
parameter, but rather a 15-dimensional posterior distribution describing the probability that
the system has a certain set of parameters, given the detected signal. It is these posterior
distributions that are then used to infer properties of the underlying population. One can
then choose an astrophysically-motivated parameterization of the population and fit the
posterior samples to the model in another layer of Bayesian inference in a process called
hierarchical Bayesian analysis, the output of which is a posterior distribution on the value of
the population parameters; it is also possible to compare the likelihoods between the models
to discern which one is more favored. Analyses using flexible approaches (e.g. splines,
Gaussian processes), which have the advantage of not being model-dependent, have also
been explored. See [20] for a pedagogical introduction to both PE and hierarchical inference
in the context of GW astronomy.

One of the primary goals of hierarchical inference in GW astronomy is to learn about the
formation origins of the detected BBHs. Several different formation mechanisms have been
explored in the literature, each of which have different signatures in BBH parameter space,
subject to modelling uncertainties. These formation channels can be roughly grouped into
two categories: dynamical formation channels, which involve BBHs formed via random dy-
namical capture in dense stellar environments, and field channels, which involve the isolated
co-evolution of a binary star system. Recent literature has suggested that BBHs that form
via field channels have mass-spin correlations; in particular, there is a negative correlation
between the mass and the spin magnitude of the secondary star, which can be spun up via
tidal forces [5], although the strength of this correlation is uncertain [14]. Hierarchical merg-
ers in dynamical channels, involving the mergers of merger remnants, also have a mass-spin
correlation, as the 2nd-generation component should have both a higher mass and a charac-
teristic high spin-magnitude of around a ∼ 0.7 [12]. Additionally, there are detections in our
current catalog with extreme mass-spin properties that are difficult to explain via isolated
evolution [23]. The goal of this project is to employ hierarchical Bayesian inference to fit a
spin-mass correlated model, motivated by the astrophysical literature, to gravitational-wave
data to learn about the formation mechanisms of BBHs.

Method

Due to limitations in the number and quality of our current detections, we will take a heuristic
approach to searching for a mass-spin correlation within the BBH population. My tentative
proposal is to model χeff as a Gaussian, and allow the mean and width of the Gaussian to vary
linearly with the mass of the secondary black hole, or alternatively, the mass of the highest-
spinning black hole [6]. Assuming that the majority of the detected BBHs originate from
the field, this should capture, to first order, the correlation described in the previous section,
since χeff should act as a proxy for the spin-magnitude of the highest-spinning component,
assuming that the other black hole has negligible spin. To capture a possible sub-population
of dynamical mergers, we could additionally introduce a second model which has a Gaussian
in χeff with mean fixed at 0 (as is expected in an isotropic spin distribution) and perhaps
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width that is allowed to vary with mass, and infer the mixing fraction between the two
models.

From similar studies of mass-spin correlations on GWTC-3 data, we do not expect to
be able to draw conclusions from inference on GWTC-3 data. However, making projections
for 3rd-generation (3G) detectors (i.e. Cosmic Explorer, Einstein Telescope) could provide
exciting implications for what we can expect in coming decades in GW astrophysics. We plan
on doing an injection study, where we draw from some distribution given by grid simulations
of BBHs (i.e. [24, 5, 14]) and see if it is possible to recover a linear correlation with the
detection limits of future detectors.

To do the hierarchical inference, we will use the Python inference codes gwpopulation
[19] and bilby [3].

Current Progress

Thus far, most of my time has been spent on reviewing the literature, learning about
how hierarchical inference works, brainstorming ideas with my mentor, and learning how
gwpopulation works. As such, most of the problems I have encountered have been ques-
tions regarding the material I have read or specifics on gwpopulation, which have been
helpfully answered by my mentor. Writing code to create the models and run the infer-
ence as outlined above should begin within the next week. I anticipate problems with using
gwpopulation and bilby, as is usually the case when I use a code package that I did not
write. I think it is possible that no strong correlation will be found with GWTC-3 data,
although this is expected.
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