
LIGO SURF Interim Report 2:

Inferring the Population of Merging Black Holes with

Astrophysically Motivated Models

September 23, 2023

Author: April Qiu Cheng (aqc@mit.edu)
Direct Supervisor: Jacob Golomb (jgolomb@caltech.edu)
Faculty Supervisor: Alan Weinstein (ajw@caltech.edu)

1 Introduction

Gravitational waves (GWs)—first prediced by Einstein shortly after his introduction of Gen-
eral Relativity but at the time predicted to be unobservable—are propagating perturbations
in the spacetime metric. In 2015, they were directly detected by the Laser Interferometer
Gravitational-wave Observatory (LIGO) [1]. Since gravitational waves are produced by a
time-varying mass quadrupole moment, thus far only merging binary compact objects (black
holes (BHs) and neutron stars) have produced gravitational waves detectable by our cur-
rent gravitational wave experiments LIGO and Virgo. Nonetheless, this has opened up an
entirely new field of GW astronomy. With the third LIGO-Virgo GW transient catalog
(GWTC-3), we have now O(100) detections of gravitational waves, most of which are binary
black holes (BBHs). It is now possible to not only infer individual source properties, but
also to probe the underlying population from which these BBHs arise, placing constraints on
models of stellar evolution and astrophysics. Interesting population properties that can be
probed with the GW dataset include the shape of the BH mass distribution [23, 2], the BH
spin distribution [22, 7, 12, 29, 2], the distribution of BBHs across the sky [18], the evolution
of merger rate and other properties with redshift [11, 7, 2], correlations between properties
such as mass and spin [7, 13, 30, 4, 2, 16], and even branching ratios between different BBH
formation channels [31, 15, 28, 19].

Such analyses are usually done with a method called hierarchical Bayesian inference. BBH
systems are completely described by 15 parameters: two characterizing the mass of each BH,
6 characterizing the 3D spin vectors of each BH, and seven extrinsic parameters that describe
the sky location, distance, and orientation of the system. However, these parameters cannot
be extracted straightforwardly from the GW strain data; for example, the majority of the spin
information we obtain from a detection is from a measurement of the effective dimensionless
spin parameter (χeff), which is a mass-weighted combination of the spin magnitude projected
onto the orbital angular momentum, since it is the leading-order spin term in the post-
Newtonian expansion of the strain. Furthermore, there exist degeneracies between some
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of the parameters. In the GW literature, these parameters are extracted for each system
using Bayesian inference in a process called parameter estimation (PE). Therefore, what
we have for each detection is not an exact measurement of any parameter, but rather a 15-
dimensional posterior distribution describing the probability that the system has a certain set
of parameters, given the detected signal. It is these posterior distributions that are then used
to infer properties of the underlying population. One can then choose an astrophysically-
motivated parameterization of the population and fit the posterior samples to the model in
another layer of Bayesian inference in a process called hierarchical Bayesian analysis, the
output of which is a posterior distribution on the value of the population parameters; it is
also possible to compare the likelihoods between the models to discern which one is more
favored. Analyses using flexible approaches (e.g. splines, Gaussian processes), which have the
advantage of not being model-dependent, have also been explored. See [27] for a pedagogical
introduction to both PE and hierarchical inference in the context of GW astronomy.

One of the primary goals of hierarchical inference in GW astronomy is to learn about the
formation origins of the detected BBHs. Several different formation mechanisms have been
explored in the literature, each of which have different signatures in BBH parameter space,
subject to modelling uncertainties. These formation channels can be roughly grouped into
two categories: dynamical formation channels, which involve BBHs formed via random dy-
namical capture in dense stellar environments, and field channels, which involve the isolated
co-evolution of a binary star system. Recent literature has suggested that BBHs that form
via field channels have mass-spin correlations; in particular, there is a negative correlation
between the mass and the spin magnitude of the secondary star, which can be spun up via
tidal forces [5], although the strength of this correlation is uncertain [17]. Hierarchical merg-
ers in dynamical channels, involving the mergers of merger remnants, also have a mass-spin
correlation, as the 2nd-generation component should have both a higher mass and a charac-
teristic high spin-magnitude of around a ∼ 0.7 [15]. Additionally, there are detections in our
current catalog with extreme mass-spin properties that are difficult to explain via isolated
evolution [30]. The goal of this project is to employ hierarchical Bayesian inference to fit a
spin-mass correlated model, motivated by the astrophysical literature, to gravitational-wave
data to learn about the formation mechanisms of BBHs. In particular, recent models sug-
gest that in isolated formation channels, there is a correlation between the mass and spin
magnitude of the secondary BH [17], which is spun-up through tidal interactions during the
second mass-transfer phase. The goal of this project is to fit a heuristic model to recover this
correlation in both real and injected data, and possibly extend this model to a correlation
in redshift to model the delay time distribution as a function of the masses or spins.

2 Method

To do the hierarchical inference, we use the Python hierarchical inference code gwpopulation
[24], with the dynesty nested sampler [20] as implemented by bilby [3]. To account for
selection effects, we use the method described in [10] to compute the selection term α(Λ).
We use the search sensitivity samples from the publicly-released simulated injection campaign
[9], and consider a sample found using the same criteria as the GWTC-3 data release, i.e. if
the optimal SNR ρopt > 10 for O1 and O2, or if FARmin < 1 yr−1 for O3, where FARmin is

2



the minimum False Alarm Rate (FAR) across all search pipelines.
We have found that there are significant regions of parameter space that have a very

low number of effective Monte-Carlo samples (Neff), especially at negative values of δ log σ,
whose narrow Gaussians are poorly sampled from the individual event χeff posteriors. To
remedy this issue, we assign a likelihood of 0 to regions of parameter space with Neff < N ,
where N is the number of events, and switch from using C01:Mixed to C01:IMRPhenomXPHM

PE samples for our analysis of GWTC-3 data in order to have more samples. We implement
this with the MinimumEffectiveSamplesLikelihood class from gwpopulation pipe [21],
the interface package to gwpopulation.

3 Models

In the standard literature, labels for each BH are assigned based on mass-sorting, i.e. m1

and a1 are the mass and spin of the BH with greater mass, while m2 and a2 correspond to the
secondary BH. In our models, we employ the spin-sorting method pioneered by [6], such that
mA and aA refer to the higher-spinning BH while mB and aB refer to the lower-spinning BH,
such that aA > aB. We use this approach because we would like to target the correlation
between the mass and spin of the star that is spun-up. While models suggest that this
should be the secondary BH, it is possible that the second mass-transfer phase can result
in mass reversals. Additionally, many BBH systems have mass ratios close to unity, which
makes it difficult to discern which is truly the secondary star. Furthermore, this approach is
more agnostic towards the mechanism behind the mass-spin correlation and simply targets
a correlation between the mass and spin of the higher-spinning star.

In all of our models, we use the source-frame masses. We use the default mass and
redshift models (i.e. Power Law + Peak to model the masses, and a power law model for
the redshift), which have 9 hyperparameters across both models. We simultaneously fit
both models with a spin model. Due to the limited data quality and number of current
detections, we only allow for a linear dependence of the spin on the masses. Assuming that
the majority of the detected BBHs originate from the field, this should capture, to first order,
the correlation described in the previous section. In the following subsections, we layout the
different spin models which we employ, all of which model spin parameters as truncated
Gaussians with log standard deviations and means allowed to vary linearly as a function of
mass.

3.1 aA spin model

The first model, which we call a A, is astrophysically motivated and specifically targets the
correlation between the mass and spin of the spun-up star described in [17]. We model aA
as a Gaussian truncated on [0, 1] that is allowed to vary linearly with mA, and model aB as
a Gaussian truncated on [0, aA] (hence enforcing the condition aA > aB) with a fixed width
and standard deviation that we fit for:
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π(aA |Λ,mA) = N (aA; µA(mA,Λ), 10
log σA(mA,Λ), 0, 1) (1)

π(aB |Λ, aA) = N (aB; µB, 10
log σB , 0, aA) (2)

where N (x; µ, σ, c, d) is a Gaussian on x truncated on [c, d] with mean µ and standard
deviation σ, Λ = [µA0, δµ,AA, log σA0, δlog σ,AA, µB, log σB] are the 6 spin hyperparameters,
and

µA(mA,Λ) = µA0 + δµ,AA

(
mA

10M⊙
− 1

)
(3)

log σA(mA,Λ) = log σA0 + δlog σ,AA

(
mA

10M⊙
− 1

)
. (4)

Additionally, we enforce the following conditions on the truncated Gaussian:

N (x; µ, σ, c, d) =

{
0 if σ < 10−3 or µ /∈ [−0.2, 1.2]

G(µ, σ, c, d) otherwise
, (5)

where G(µ, σ, c, d) is an ordinary Gaussian truncated on [c, d]. We enforce this cutoff to
prevent infeasibly narrow Gaussians and models that peak significantly outside the bounds,
which lead to numerical difficulties and have ambiguous physical interpretations.

3.2 χeff spin model

Because spin magnitudes are not measured precisely, we probe the same correlation using the
effective dimensionless spin parameter χeff , which is measured with much greater certainty.
If we assume, as in our astrophysical models, that only the spun-up star has significant spin,
then χeff is a good proxy for aA. This model, which we call chieff, models χeff as a Gaussian
on [−1, 1] that is again allowed to vary linearly with mA:

π(χeff |Λ,mA) = N (χeff ; µ(mA,Λ), 10
log σ(mA,Λ),−1, 1) (6)

µ(mA,Λ) = µ0 + δµ

(
mA

10M⊙
− 1

)
(7)

log σ(mA,Λ) = log σ0 + δlog σ

(
mA

10M⊙
− 1

)
. (8)

We enforce a similar cutoff as in Equation 5, except we set N (χeff) = 0 when µ /∈ [−1, 1].
This model has 4 spin hyperparameters, Λ = [µ0, δµ, log σ0, δlog σ].

3.3 Alternate χeff spin models

Finally, we explore two alternative models for χeff . The model is the same as the chieff

model, but we instead allow χeff to vary with the total mass mtot (chieff totalmass) and
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the primary mass m1 (chieff m1). The chieff m1 model is identical to one of the models
explored in [7], and we include this model as a test of validation for our results.

The equations governing this model are identical to Equations 6-8, except the χeff totalmass

has a pivot mass of mtot = 20M⊙, such that

µ(mtot,Λ) = µ0 + δµ

(
mtot

20M⊙
− 1

)
(9)

log σ(mtot,Λ) = log σ0 + δlog σ

(
mtot

20M⊙
− 1

)
. (10)

4 Results for GWTC-3
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Figure 1: The mean (a) and log standard deviation (b) of the χeff truncated Gaussian for
all three models, chieff, chieff totalmass, and chieff mass1, on GWTC-3 data as a
function of mA, mtot, and m1, respectively. Solid lines show the median and 90% symmetric
credible intervals.

We perform hierarchical inference on the 69 BBHs with FAR < 1 yr−1 [2]. We use the
C01:IMRPhenomXPHM datasets from the publicly-released individual event posterior samples
published in the GWTC-2.1 [25] and GWTC-3 [26] catalogs. We calculate the PE prior at
the posterior sample points analytically, using the Jacobian developed by [8] to transform
from a flat isotropic spin prior to a prior in χeff .

Figure 1 shows the mean and log standard deviation of the χeff truncated Gaussian as a
function of mA, mtot, and m1, from the chieff, chieff totalmass, chieff mass1 models,
respectively. Consistent with the results of [7], we find no evidence of χeff varying as a
function of mass for any of our models. The χeff distribution likely peaks at a small, positive
number, also consistent with the results of [2].

Figure 2 illustrates in the same format the results from the a A model. Although we do
not find a correlation between µaA and mA, as would be implied by the results of [17], we find
that the aA distribution appears to broaden with mass. We show this broadening explicitly
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Figure 2: The results of the a A model on GWTC-3 data, showing the mean (a) and log
standard deviation (b) of the aA truncated Gaussian as a function of mA. Solid lines show
the median and 90% symmetric credible intervals, while the faded gray lines show the trace
plots of 200 random samples from the hyperposterior. In (c), we have plotted the recovered
aA distribution at different slices of mA, showing the broadening of the distribution with
mass.

in Figure 2(c). Further analysis is needed to show whether or not this result is caused by
the enforcement of the condition Neff > N .

5 Results for Injections

In order to validate our results on GWTC-3 data, we perform a simple injection study on
the a A and chieff mass1 models. We pick true values of the hyperparameters and draw
N = 1000 events from the resulting distribution to make our mock catalog. We opt to leave
out fitting the redshift distribution for simplicity, as it is independent of other components
of the model. For the a A model, after m1 and m2 are drawn from the Power Law + Peak

mass model, we assign m1 = mA (and m2 = mB) with a probability of p = 20%, and
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correspondingly m1 = mB (and m2 = mA) with a probability of 1 − p = 80%. We opt to
simulate perfect (i.e. no noise) observations with no selection biases. Therefore, the mock
posteriors are composed of a single sample, which is the true value. We perform hierarchical
inference with no selection function and a flat PE prior; we do not enforce Neff > N , since
there is only one posterior sample per event.

We are encountering separate difficulties for each model. For the a A model injection
study, the nested sampler does not converge, with d log z = inf at each iteration before even-
tually stopping. This error began when I began enforcing the aB Gaussian to be truncated
on [0, aA] rather than [0, 1] in the model. Figures 3(a-b) show the results when the aB Gaus-
sian was truncated on [0, 1], in which case were able to correctly recover a null correlation
between aA and mA. On the other hand, Figures 3(c-d) show the results of fitting injected
data to the chieff m1 model; we were not able to correctly recover the true correlation of
µχeff

with m1 within a 90% confidence interval.

6 Next Steps

First, we need to resolve the difficulties we are encountering in our injection studies. To
investigate the lack of convergence of the a A model with injected data, I will look at the
per event likelihood evaluation in the problematic regions of parameter space, as indicated
by the trace plots. To investigate the reason behind the incorrect recovery of δµ in the
chieff m1 model, I will re-run the inference with a lower mass power law index for more
events with higher mass to probe whether or not the incorrect recovery is a result of lack of
events at high mass.

The other immediate next step is to discuss our results with Jim Fuller, as our models
were motivated primarily by his paper.

References

[1] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black Hole
Merger”. In: Phys. Rev. Lett. 116.6, 061102 (Feb. 2016), p. 061102. doi: 10.1103/
PhysRevLett.116.061102. arXiv: 1602.03837 [gr-qc].

[2] R. Abbott et al. “Population of Merging Compact Binaries Inferred Using Gravitational
Waves through GWTC-3”. In: Physical Review X 13.1, 011048 (Jan. 2023), p. 011048.
doi: 10.1103/PhysRevX.13.011048. arXiv: 2111.03634 [astro-ph.HE].

[3] Gregory Ashton et al. “BILBY: A User-friendly Bayesian Inference Library for Gravitational-
wave Astronomy”. In: ApJS 241.2, 27 (Apr. 2019), p. 27. doi: 10.3847/1538-4365/
ab06fc. arXiv: 1811.02042 [astro-ph.IM].

[4] Vishal Baibhav, Zoheyr Doctor, and Vicky Kalogera. “Dropping Anchor: Understand-
ing the Populations of Binary Black Holes with Random and Aligned-spin Orienta-
tions”. In: ApJ 946.1, 50 (Mar. 2023), p. 50. doi: 10.3847/1538-4357/acbf4c. arXiv:
2212.12113 [astro-ph.HE].

7

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.1103/PhysRevX.13.011048
https://arxiv.org/abs/2111.03634
https://doi.org/10.3847/1538-4365/ab06fc
https://doi.org/10.3847/1538-4365/ab06fc
https://arxiv.org/abs/1811.02042
https://doi.org/10.3847/1538-4357/acbf4c
https://arxiv.org/abs/2212.12113


0 20 40 60 80 100

mA (M�)

0.32

0.34

0.36

0.38

0.40

0.42

0.44

µ
a
A

(a)

0 20 40 60 80 100

mA (M�)

−1.15

−1.10

−1.05

−1.00

−0.95

−0.90

−0.85

−0.80

−0.75

lo
g 1

0
(σ
a
A
)

(b)

0 20 40 60 80 100

m1 (M�)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

µ
χ

eff

(c)

0 20 40 60 80 100

m1 (M�)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

lo
g 1

0
(σ
χ

eff
)

(d)

Figure 3: The results of the a A (first row) and chieff totalmass (second row) models on
a mock catalog of N = 1000 events with no noise or selection biases, showing the mean (a,
c) and log standard deviation (b, d) of the aA and χeff truncated Gaussians as a function
of mA and m1, respectively. Solid black lines show the median and 90% symmetric credible
intervals, faded gray lines show the trace plots of 200 random samples from the hyperposte-
rior, and the green line shows the true correlation.

[5] Simone S. Bavera, Michael Zevin, and Tassos Fragos. “Approximations of the Spin of
Close Black Hole-Wolf-Rayet Binaries”. In: Research Notes of the American Astronom-
ical Society 5.5, 127 (May 2021), p. 127. doi: 10.3847/2515-5172/ac053c. arXiv:
2105.09077 [astro-ph.HE].

[6] Sylvia Biscoveanu et al. “New Spin on LIGO-Virgo Binary Black Holes”. In: Phys. Rev. Lett.
126.17, 171103 (Apr. 2021), p. 171103. doi: 10.1103/PhysRevLett.126.171103.
arXiv: 2007.09156 [astro-ph.HE].

[7] Sylvia Biscoveanu et al. “The Binary Black Hole Spin Distribution Likely Broadens
with Redshift”. In: ApJ 932.2, L19 (June 2022), p. L19. doi: 10.3847/2041-8213/
ac71a8. arXiv: 2204.01578 [astro-ph.HE].

8

https://doi.org/10.3847/2515-5172/ac053c
https://arxiv.org/abs/2105.09077
https://doi.org/10.1103/PhysRevLett.126.171103
https://arxiv.org/abs/2007.09156
https://doi.org/10.3847/2041-8213/ac71a8
https://doi.org/10.3847/2041-8213/ac71a8
https://arxiv.org/abs/2204.01578


[8] T. A. Callister. “A Thesaurus for Common Priors in Gravitational-Wave Astronomy”.
In: arXiv e-prints, arXiv:2104.09508 (Apr. 2021), arXiv:2104.09508. doi: 10.48550/
arXiv.2104.09508. arXiv: 2104.09508 [gr-qc].

[9] LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration.GWTC-
3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part
of the Third Observing Run — O1+O2+O3 Search Sensitivity Estimates. LIGO Lab-
oratory and Advanced LIGO are funded by the United States National Science Foun-
dation (NSF) as well as the Science and Technology Facilities Council (STFC) of
the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersach-
sen/Germany for support of the construction of Advanced LIGO and construction
and operation of the GEO600 detector. Additional support for Advanced LIGO was
provided by the Australian Research Council. Virgo is funded, through the European
Gravitational Observatory (EGO), by the French Centre National de Recherche Scien-
tifique (CNRS), the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the Dutch
Nikhef, with contributions by institutions from Belgium, Germany, Greece, Hungary,
Ireland, Japan, Monaco, Poland, Portugal, Spain. The construction and operation of
KAGRA are funded by Ministry of Education, Culture, Sports, Science and Technology
(MEXT), and Japan Society for the Promotion of Science (JSPS), National Research
Foundation (NRF) and Ministry of Science and ICT (MSIT) in Korea, Academia Sinica
(AS) and the Ministry of Science and Technology (MoST) in Taiwan. Zenodo, May
2023. doi: 10.5281/zenodo.7890398. url: https://doi.org/10.5281/zenodo.
7890398.

[10] Will M. Farr. “Accuracy Requirements for Empirically Measured Selection Functions”.
In: Research Notes of the American Astronomical Society 3.5, 66 (May 2019), p. 66.
doi: 10.3847/2515-5172/ab1d5f. arXiv: 1904.10879 [astro-ph.IM].

[11] Maya Fishbach, Daniel E. Holz, and Will M. Farr. “Does the Black Hole Merger Rate
Evolve with Redshift?” In: ApJ 863.2, L41 (Aug. 2018), p. L41. doi: 10.3847/2041-
8213/aad800. arXiv: 1805.10270 [astro-ph.HE].

[12] Maya Fishbach, Chase Kimball, and Vicky Kalogera. “Limits on Hierarchical Black
Hole Mergers from the Most Negative χ eff Systems”. In: ApJ 935.2, L26 (Aug. 2022),
p. L26. doi: 10.3847/2041-8213/ac86c4. arXiv: 2207.02924 [astro-ph.HE].

[13] Gabriele Franciolini and Paolo Pani. “Searching for mass-spin correlations in the pop-
ulation of gravitational-wave events: The GWTC-3 case study”. In: Phys. Rev. D
105.12, 123024 (June 2022), p. 123024. doi: 10.1103/PhysRevD.105.123024. arXiv:
2201.13098 [astro-ph.HE].

[14] Gabriele Franciolini et al. “Searching for a subpopulation of primordial black holes
in LIGO-Virgo gravitational-wave data”. In: Phys. Rev. D 105.8, 083526 (Apr. 2022),
p. 083526. doi: 10.1103/PhysRevD.105.083526. arXiv: 2105.03349 [gr-qc].

[15] Davide Gerosa and Maya Fishbach. “Hierarchical mergers of stellar-mass black holes
and their gravitational-wave signatures”. In: Nature Astronomy 5 (July 2021), pp. 749–
760. doi: 10.1038/s41550-021-01398-w. arXiv: 2105.03439 [astro-ph.HE].

9

https://doi.org/10.48550/arXiv.2104.09508
https://doi.org/10.48550/arXiv.2104.09508
https://arxiv.org/abs/2104.09508
https://doi.org/10.5281/zenodo.7890398
https://doi.org/10.5281/zenodo.7890398
https://doi.org/10.5281/zenodo.7890398
https://doi.org/10.3847/2515-5172/ab1d5f
https://arxiv.org/abs/1904.10879
https://doi.org/10.3847/2041-8213/aad800
https://doi.org/10.3847/2041-8213/aad800
https://arxiv.org/abs/1805.10270
https://doi.org/10.3847/2041-8213/ac86c4
https://arxiv.org/abs/2207.02924
https://doi.org/10.1103/PhysRevD.105.123024
https://arxiv.org/abs/2201.13098
https://doi.org/10.1103/PhysRevD.105.083526
https://arxiv.org/abs/2105.03349
https://doi.org/10.1038/s41550-021-01398-w
https://arxiv.org/abs/2105.03439


[16] Jaxen Godfrey, Bruce Edelman, and Ben Farr. “Cosmic Cousins: Identification of a
Subpopulation of Binary Black Holes Consistent with Isolated Binary Evolution”.
In: arXiv e-prints, arXiv:2304.01288 (Apr. 2023), arXiv:2304.01288. doi: 10.48550/
arXiv.2304.01288. arXiv: 2304.01288 [astro-ph.HE].

[17] Linhao Ma and Jim Fuller. “Tidal Spin-up of Black Hole Progenitor Stars”. In: arXiv e-
prints, arXiv:2305.08356 (May 2023), arXiv:2305.08356. doi: 10.48550/arXiv.2305.
08356. arXiv: 2305.08356 [astro-ph.HE].

[18] Ethan Payne et al. “Searching for anisotropy in the distribution of binary black hole
mergers”. In: Phys. Rev. D 102.10, 102004 (Nov. 2020), p. 102004. doi: 10.1103/
PhysRevD.102.102004. arXiv: 2006.11957 [astro-ph.CO].

[19] April Qiu Cheng, Michael Zevin, and Salvatore Vitale. “What You Don’t Know Can
Hurt You: Use and Abuse of Astrophysical Models in Gravitational-wave Population
Analyses”. In: arXiv e-prints, arXiv:2307.03129 (July 2023), arXiv:2307.03129. doi:
10.48550/arXiv.2307.03129. arXiv: 2307.03129 [astro-ph.HE].

[20] Joshua S. Speagle. “DYNESTY: a dynamic nested sampling package for estimating
Bayesian posteriors and evidences”. In: MNRAS 493.3 (Apr. 2020), pp. 3132–3158.
doi: 10.1093/mnras/staa278. arXiv: 1904.02180 [astro-ph.IM].

[21] Colm Talbot. “GWPopulation pipe”. In: (Nov. 2021). doi: 10.5281/zenodo.5654673.
url: https://git.ligo.org/RatesAndPopulations/gwpopulation_pipe.

[22] Colm Talbot and Eric Thrane. “Determining the population properties of spinning
black holes”. In: Phys. Rev. D 96.2, 023012 (July 2017), p. 023012. doi: 10.1103/
PhysRevD.96.023012. arXiv: 1704.08370 [astro-ph.HE].

[23] Colm Talbot and Eric Thrane. “Measuring the Binary Black Hole Mass Spectrum
with an Astrophysically Motivated Parameterization”. In: ApJ 856.2, 173 (Apr. 2018),
p. 173. doi: 10.3847/1538-4357/aab34c. arXiv: 1801.02699 [astro-ph.HE].

[24] Colm Talbot et al. “Parallelized inference for gravitational-wave astronomy”. In: Phys. Rev. D
100.4, 043030 (Aug. 2019), p. 043030. doi: 10.1103/PhysRevD.100.043030. arXiv:
1904.02863 [astro-ph.IM].

[25] The LIGO Scientific Collaboration et al. “GWTC-2.1: Deep Extended Catalog of Com-
pact Binary Coalescences Observed by LIGO and Virgo During the First Half of the
Third Observing Run”. In: arXiv e-prints, arXiv:2108.01045 (Aug. 2021), arXiv:2108.01045.
doi: 10.48550/arXiv.2108.01045. arXiv: 2108.01045 [gr-qc].

[26] The LIGO Scientific Collaboration et al. “GWTC-3: Compact Binary Coalescences
Observed by LIGO and Virgo During the Second Part of the Third Observing Run”.
In: arXiv e-prints, arXiv:2111.03606 (Nov. 2021), arXiv:2111.03606. doi: 10.48550/
arXiv.2111.03606. arXiv: 2111.03606 [gr-qc].

[27] Eric Thrane and Colm Talbot. “An introduction to Bayesian inference in gravitational-
wave astronomy: Parameter estimation, model selection, and hierarchical models”. In:
PASA 36, e010 (Mar. 2019), e010. doi: 10.1017/pasa.2019.2. arXiv: 1809.02293
[astro-ph.IM].

10

https://doi.org/10.48550/arXiv.2304.01288
https://doi.org/10.48550/arXiv.2304.01288
https://arxiv.org/abs/2304.01288
https://doi.org/10.48550/arXiv.2305.08356
https://doi.org/10.48550/arXiv.2305.08356
https://arxiv.org/abs/2305.08356
https://doi.org/10.1103/PhysRevD.102.102004
https://doi.org/10.1103/PhysRevD.102.102004
https://arxiv.org/abs/2006.11957
https://doi.org/10.48550/arXiv.2307.03129
https://arxiv.org/abs/2307.03129
https://doi.org/10.1093/mnras/staa278
https://arxiv.org/abs/1904.02180
https://doi.org/10.5281/zenodo.5654673
https://git.ligo.org/RatesAndPopulations/gwpopulation_pipe
https://doi.org/10.1103/PhysRevD.96.023012
https://doi.org/10.1103/PhysRevD.96.023012
https://arxiv.org/abs/1704.08370
https://doi.org/10.3847/1538-4357/aab34c
https://arxiv.org/abs/1801.02699
https://doi.org/10.1103/PhysRevD.100.043030
https://arxiv.org/abs/1904.02863
https://doi.org/10.48550/arXiv.2108.01045
https://arxiv.org/abs/2108.01045
https://doi.org/10.48550/arXiv.2111.03606
https://doi.org/10.48550/arXiv.2111.03606
https://arxiv.org/abs/2111.03606
https://doi.org/10.1017/pasa.2019.2
https://arxiv.org/abs/1809.02293
https://arxiv.org/abs/1809.02293


[28] L. A. C. van Son et al. “No Peaks without Valleys: The Stable Mass Transfer Channel
for Gravitational-wave Sources in Light of the Neutron Star-Black Hole Mass Gap”.
In: ApJ 940.2, 184 (Dec. 2022), p. 184. doi: 10.3847/1538-4357/ac9b0a. arXiv:
2209.13609 [astro-ph.HE].

[29] Salvatore Vitale, Sylvia Biscoveanu, and Colm Talbot. “Spin it as you like: The (lack
of a) measurement of the spin tilt distribution with LIGO-Virgo-KAGRA binary black
holes”. In: A&A 668, L2 (Dec. 2022), p. L2. doi: 10.1051/0004-6361/202245084.
arXiv: 2209.06978 [astro-ph.HE].

[30] Michael Zevin and Simone S. Bavera. “Suspicious Siblings: The Distribution of Mass
and Spin across Component Black Holes in Isolated Binary Evolution”. In: ApJ 933.1,
86 (July 2022), p. 86. doi: 10.3847/1538-4357/ac6f5d. arXiv: 2203.02515 [astro-ph.HE].

[31] Michael Zevin et al. “One Channel to Rule Them All? Constraining the Origins of
Binary Black Holes Using Multiple Formation Pathways”. In: ApJ 910.2, 152 (Apr.
2021), p. 152. doi: 10.3847/1538-4357/abe40e. arXiv: 2011.10057 [astro-ph.HE].

11

https://doi.org/10.3847/1538-4357/ac9b0a
https://arxiv.org/abs/2209.13609
https://doi.org/10.1051/0004-6361/202245084
https://arxiv.org/abs/2209.06978
https://doi.org/10.3847/1538-4357/ac6f5d
https://arxiv.org/abs/2203.02515
https://doi.org/10.3847/1538-4357/abe40e
https://arxiv.org/abs/2011.10057

	Introduction
	Method
	Models
	aA spin model
	eff spin model
	Alternate eff spin models

	Results for GWTC-3
	Results for Injections
	Next Steps

