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Abstract

The LIGO–Virgo–KAGRA (LVK) Collaboration has made break-
through discoveries in gravitational-wave astronomy, a new field
that provides a different means of observing our Universe.
Gravitational-wave discoveries are possible thanks to the work of
thousands of people from across the globe working together. In
this article, we discuss the range of engagement activities used to
communicate LVK gravitational-wave discoveries and the stories
of the people behind the science, using the activities surrounding
the release of the third Gravitational-Wave Transient Catalog as a
case study.

1 Introduction: Context and Objectives

Gravitational waves (GWs) can be difficult to imagine. They are
ripples in spacetime, created by the acceleration of massive ob-
jects, that propagate across the Universe at the speed of light. The
strongest GW sources are massive and rapidly moving: the best
sources for ground-based GW detectors are coalescing binaries of
black holes or neutron stars. After travelling across the cosmos
to Earth, GWs are almost imperceptibly small. The strongest sig-
nals correspond to a stretching and squeezing of space of 1 part
in 1021. Observing GWs has therefore been a great experimen-
tal challenge, requiring an international community to design and
build the complex, highly sensitive instruments needed to measure
the waves, and to create and test the algorithms needed to analyse
the data.

In 2015, 100 years after Einstein first calculated the properties of
GWs in his theory of general relativity, the first direct observation
of GWs was made [Abbott et al., 2016b]. This discovery was
confirmation for Einstein’s theory, an experimental triumph, and
the beginning of a new era for astronomy. The signal GW150914
came from two black holes, each about 30 times the mass of our
Sun, coalescing more than a billion light-years away. This was the
first time such a binary black hole system was found, the first time
black holes of this size were discovered, and the first time two
black holes were observed to inspiral and merge. The discovery
was a major global news event [Key et al., 2016], building on the
public’s fascination with Einstein and black holes.
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Since 2015, the LIGO–Virgo–KAGRA (LVK) Collaboration,
which operates the international network of ground-based laser-
interferometric GW observatories (the two LIGO sites in the
US [Aasi et al., 2015], Virgo in Italy [Acernese et al., 2015], KA-
GRA in Japan [Akutsu et al., 2021] and GEO600 in Germany [Doo-
ley et al., 2016] has made many further GW discoveries. The field
has grown rapidly, with the third GW Transient Catalog (GWTC-
3) increasing the number of probable detections to 90 [Abbott
et al., 2023a]. The latest observing run is ongoing. These obser-
vations have revealed a diverse range of black hole and neutron star
binaries, and revolutionised our understanding of these sources’ as-
trophysics.

Surrounding each results release are numerous engagement and
communication activities. These share the wonder of discovery,
what can be learned from GWs, and the technological advances
that enable these groundbreaking measurements. Matching the
global composition of the LVK, selected resources have been trans-
lated into over 20 languages.

Engagement, communication and education activities are carried
out by a wide variety of individuals: from those who see themselves
as scientists and engineers with a passion for outreach, to those
who view themselves as outreach experts with a passion for science.
These individuals make commitments as LVK members, and join
together in collaboration-wide teams and outreach partnerships.

Discoveries also provide an opportunity to focus on the people
behind the science. The LVK includes around 2000 people from
diverse backgrounds across the globe. Their activities range from
designing instrumentation to operating the kilometre-scale laser
interferometers, from coding analysis algorithms to calculating GW
emission. Making connections with the people within the LVK
reveals the human side of how science works, and provides possible
role models for young people interested in science, technology,
engineering and mathematics (STEM).

Communicating LVK discoveries faces several challenges. Some,
such as explaining complicated ideas using non-technical language
or engaging with hard-to-reach communities, are common to other
science communications. However, LVK science also faces specific
challenges including explaining the concept of GWs, which are alien
to everyday experiences; constructing a narrative around the work
of a large collaboration, where it is often not possible to identify
distinct contributions of individuals, and maintaining interest as
the field develops from an era of first detections to using large cat-
alogs to make statistical statements. Each of these challenges also
provides an opportunity, enabling us to increase the scientific liter-
acy of those reached: explaining the results of LVK work, how they
are produced, and how modern science makes discoveries through
carefully combining many pieces of research.
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In this article, we detail communication methods used by the
LVK. We first review the range of engagement activities used to
communicate LVK GW discoveries and the stories of the people
behind the science, and then provide specific examples of activi-
ties used for GWTC-3. We conclude with reflections upon these
activities and the challenges of communicating LVK discoveries.

2 General communication methods

Discovery announcements from the LVK normally have three com-
ponents: paper, data release, and educational and engagement
resources. Here we describe some general and long-term educa-
tion and engagement activities of the LVK.

The LVK is a consortium of its three constituent collaborations,
each with its own internal organisational structure. Communi-
cations efforts are primarily led by a division-level coordinator or
chair, who oversees various working groups, committees, and in-
dividual efforts working towards shared objectives. Activities or-
ganised through these groups are typically undertaken by teams of
individuals, who then report their progress through regular meet-
ings, LVK-wide conferences, and annual reports. Some activities,
like coordination of press releases, may be done by dedicated com-
munications teams in each of the three collaborations, but most ac-
tivities are done by volunteers from the LVK. Division leads are re-
sponsible for ensuring that these activities complement each other
and align with parallel efforts across the observatory sites.

The LVK consists of many individuals with different backgrounds
and job roles working in institutions around the world and funded
by different sources. This results in a diverse set of public-
engagement activities run by different teams. While these may
share a broad goal of communicating GW science, they may differ
in specific goals, e.g., encouraging schoolchildren to study STEM
or informing science journalists. The different activities comple-
ment each other, and provide a breadth of resources and expertise
for LVK members to draw upon. Below we group in terms of activ-
ities (Table 1), reflecting how these are organised within the LVK
by different teams.

2.1 Sharing the people behind the science

Discovery science is not just about the results, it is also about the
people behind them. Highlighting individuals within the LVK can
provide STEM role models, challenge stereotypes, and help to fos-
ter a welcoming environment by promoting diversity and inclusion.

The LIGO Magazine (www.ligo.org/magazine), published twice
annually, is commissioned and edited by a team of volunteers from
the LIGO Scientific Collaboration. It was conceived to build con-
nections across the diverse GW community and inform the inter-
ested public. Since the first edition in 2012, the Magazine has
featured 470 authors, representing 237 workplaces in 23 countries
(as of Issue 24, March 2024). Articles include perspectives of
working on GW science, personal stories, opinion pieces, science
explainers, and advice columns. The Magazine provides opportu-
nities for early-career scientists to discuss their behind-the-scenes
experiences of working on big GW results, as well as an avenue
for current and former LVK members to share their perspectives of
working in academia and beyond. The LIGO Magazine has a pro-
fessional, high-quality design. For each edition, 500 hard copies
are printed. Approximately half are sent to LVK Collaboration
meetings for participants to take back to their home institutions;
the rest are distributed between detector sites and other LVK in-
stitutions worldwide. Print copies are also used within LVK as

Figure 1: Frequency of Humans of LIGO participants’ institution
(top) and hometown (bottom) county.

handouts for government representatives, students, and to visitors
at detector sites and institutions. The full archive is also online as
PDF downloads.

Humans of LIGO (humansofligo.blogspot.com) showcases the
lives, backgrounds, and inspirations of LVK members and GW sci-
entists through blog posts. Each post consists of an image of the
participant, a direct quote about their experiences, and a short
biography including job description and hobbies. The blog posts
are shared on LIGO social media, and have reached over 53, 000
views (as of May 2024). Since its inception in 2018, the blog has
featured 59 participants from 11 different countries, working at 42
institutions (Figure 1). While profiled scientists come from more
diverse locations than just those of LVK institutions, they are still
concentrated, reflecting the inequitable distribution of scientific re-
search [King, 2004]. A future goal is to add profiles for scientists
from other backgrounds and demonstrate potential opportunities
within STEM for people across the world.

Antimatter web comics (antimatterwebcomics.com) by Nutsi-
nee Kijbunchoo features day-to-day experiences and current affairs
from the GW community and beyond (Figure 2). Mental health
and graduate-student life are focuses of many comics. Based upon
webpage views (August 2024), the most popular two comics are
about the discovery of the first binary neutron star signal and
about living with depression, demonstrating that both communi-
cating discoveries and sharing the lives of the scientists behind
them have appeal. Comics have been regularly featured in the
LIGO Magazine.

The LIGO-India blog, Glorious Women [LIGO-India, 2024a]
showcases STEM role models, highlighting women from across the
LVK. Behind-the-scenes interviews feature the daily lives of stu-
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Table 1: A selection of LVK communication activities and examples we discuss in this article.

Activity Examples Audiences Media

Sharing the people behind
the science

LIGO Magazine; Humans of
LIGO; Antimatter comics;
LIGO-India blog

LVK members; other aca-
demics; undergraduate stu-
dents; school students; gen-
eral public

Print; online writing; graphics

Engaging academia Journal articles; Open Data
Workshops; data releases; we-
binars; direct interventions

LVK members; other aca-
demics; undergraduate stu-
dents; interested public

Academic resources; live and
recorded talks; online course
materials; online documenta-
tion; online correspondence

Supporting formal class-
room education

Educator’s guide; Einstein-
First; Space Public Outreach
Team

School educators; undergrad-
uate students; school children

Online written resources; face-
to-face communication

Writing reference texts Science Summaries; press re-
leases; news items

Undergraduate students; sci-
ence journalists; interested
public

Online writing; print

Interacting in person Science festivals; museum ex-
hibits; visitor centres

School children; general public Face-to-face communication;
talks; live demonstrations; in-
teractive exhibits

Creating graphics Infographics; simulation visu-
alisations; artistic impressions;
Masses in the Stellar Grave-
yard; LVK Orrery

Academics; undergraduate
students; journalists; general
public

Images; videos

Employing multisensory re-
sources

Sounds of Spacetime; Tactile
Universe; Low Mass Beats

General public Audio; 3D-printed materials

Combining art and music
with science

GravitySynth; GWSciArt; Cel-
ebrating Einstein festival

General public Visual arts; music

Communicating through
social and non-traditional
media

Podcasts; social-media post-
ing; Reddit Ask-me-anything

Science journalists; interested
public; general public

Online correspondence; on-
line writing; audio; graphics;
videos

Using interactive technolo-
gies

Laser Labs games and apps;
Black Hole Hunter; Mission
Gravity

School children; general public Interactive software

Figure 2: Antimatter comic showing LIGO scientists performing detector checks (credit: Nutsinee Kijbunchoo). A version of this comic
featured in the CQG+ blog accompanying a paper describing detector characterization for GW150914 [Abbott et al., 2016a].
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dents, their motivation, contributions and challenges [LIGO-India,
2024b].

2.2 Engaging academia

Sharing our discoveries, and how to use them, is key to ensuring
a wider impact on the scientific community.

Communication with academics is primarily through scholarly
articles. Since GW astronomy is new, the LVK have written ded-
icated articles on introductory GW data analysis [Abbott et al.,
2020a], our data releases [Abbott et al., 2021, 2023b], and the
basic physics of a binary coalescences (suitable for undergraduate
teaching) [Abbott et al., 2017].

Data releases are coordinated by the GW Open Science Cen-
ter (GWOSC), which hosts raw data, links to LVK publications
and further data products (gwosc.org). GWOSC maintains lists
of open-source analysis software, and provides teaching on data
analysis through annual Open Data Workshops. Workshops are
delivered in a hybrid format, with 200–300 people participating in-
person each year, and over 7, 700 people enrolling online over the
last four years. Workshop materials are openly available online.

To accompany the release of key papers, the LVK organises
Zoom webinars, with attendees able to submit questions. These
provide convenient, direct communication with other scientists,
and reach a larger audience than many in-person conferences.
Recordings are uploaded to YouTube. YouTube views range from
400 to 3, 400 (August 2024), with the older recordings accumulat-
ing more views.

The LVK also engages with the academic community to promote
proper recognition of its three constituent collaborations. There
is currently a bias in scholarly literature: an abbreviated narra-
tive attributes credit to LIGO, excluding Virgo and KAGRA from
LVK achievements, with consequences for scientific careers, accu-
racy of media and interactions with funding agencies. A year-long
project [Barneo et al., 2024] studied this cognitive bias, and tried
to educate the community. While intervention has encouraged au-
thors to include proper attribution in their work, it has yet to be
seen if this has a long-term impact of reducing incomplete attri-
bution.

2.3 Supporting formal classroom education

LVK members have maintained long-term efforts to introduce GWs
and related topics into formal classroom education. Examples in-
clude an Educator’s Guide [Edeon STEM Learning, 2016], courses
for community-college teachers, high-school resources, and under-
graduate lab demonstrations [Gardner et al., 2022].

Einstein-First (www.einsteinian physics.com) has developed an
eight-year spiral curriculum Eight Steps to Einstein’s Universe for
students aged 7–8 to 15–16 years old. This introduces fundamen-
tal concepts (e.g., atoms, molecules, photons and phonons), and
in the last year of compulsory science education, a module about
GWs, black holes, climate change and Hubble’s law [Popkova et al.,
2023]. The Einstein-First team is upskilling almost 100 teachers
through micro-credentials courses with many teachers now deliver-
ing the program. Micro-credential training successfully empowered
teachers: 96% agreed or strongly agreed both that they understood
why Einsteinian concepts were important to the school curriculum,
and that they would feel confident running Einstein-First activities
for their students [Kaur et al., 2023a,b]. Efforts are underway
to introduce Einstein-First in Australia, India, USA, Greece, and
Brazil.

Outreach to schools and STEM education programs provides an
avenue for sharing GW discoveries, engaging students and teach-
ers, and additionally provides science-communication training for
GW researchers. Assessment of the impact of the Space Pub-
lic Outreach Team (SPOT) program shows positive outcomes for
students at all levels for SPOT programs across a range of geo-
graphic locations, benefitting the college-student presenters with
improved scientific knowledge and presentation skills, and the audi-
ence of school children with greater engagement with science [Key
et al., 2024; Des Jardins et al., 2020].

2.4 Writing reference texts

LVK Science Summaries and press releases are both Collaboration-
coordinated activities to provide written summaries of our discov-
eries.

LVK Science Summaries are a long-standing effort to explain
LVK publications at a technical level typically higher than in the
popular press but still accessible for enthusiastic lay readers. They
are published on www.ligo.org, distributed as print copies at out-
reach events, and shared with journalists. Summaries for discovery
announcements may get thousands to tens of thousands of views
around publication. Summaries are translated into a variety of lan-
guages by LVK volunteers, with discovery papers often receiving
the most attention (e.g., the GW190521 summary was translated
into 16 languages) [Keitel et al., 2021]. Numbers of summaries
and translations over time are displayed in Figure 3, demonstrat-
ing significant growth in translation activity especially during the
LVK’s third observing run (2019–2020). However, translation ac-
tivity is typically less diverse for summaries of lower-profile (non-
discovery) papers, demonstrating a similar pattern of enthusiasm
by LVK translators and the target audience

Press releases to accompany discovery announcements are pre-
pared centrally, including quotations from a selection of LVK mem-
bers, and then adapted by member institutions (often including
quotations from their scientists). As a global collaboration, it is
not possible to find a single time for press releases to be made
public that works for all time zones, which can make it challenging
to coordinate local coverage.

Both Science Summaries and press releases have been drawn
upon by journalists [e.g., Carlise, 2021]. Translation of Science
Summaries is especially important for use in non-English media.

2.5 Interacting in person

In-person outreach to the general public reaches fewer people than
other means, but it can yield impactful interactions, and may be
perceived as having more value [Baucum, 2022]. As reported by
one young attendee to in-person events: “one of the activities that
most fostered my connection to the STEM world was attending
in-person talks, conferences, and panel discussions [. . . ] ultimately
leading me to pursue a degree in physics.”

LVK members participate in science festivals, classroom visits,
the creation of museum exhibits (such as interactive detector mod-
els [Cooper et al., 2021], or the Black Hole and Gravitational Wave
circular exhibitions, lectures and panel discussions across Taiwan
and Japan), visitor centers, and tours of the GW observatories.
The face-to-face format allows staff to customize the experience
to the visitor.

LVK’s visitor centers merge artifacts from the detectors with in-
teractive exhibits that put the visitor in the role of a scientist or
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Figure 3: Number of Science Summaries by year of posting, and their number of translations. There were fewer papers in 2021–2024
while waiting for the results of the latest observing run.

engineer. The exhibits explore the underlying science and engineer-
ing of GW detectors, from the importance of pendula to concepts
underpinning gravity. In-person and virtual tours of the detectors
give a glimpse to the heart of operations. Over 330, 000 visitors
have interacted with the LVK visitor centers; 2024 attendance is
projected to reach 30, 000.

Science festivals and local outreach efforts around the world
connect with classrooms and the general public. Outreach is per-
formed by seasoned scientists, engineers, graduate students and
undergraduates new to GW science. Such efforts positively impact
the undergraduates who perform the outreach [Carpenter, 2015;
Inverness Research Associates, 2014; Young & Katzman, 2023].
A 2023 survey revealed that 95% of undergraduates said “their
experience has changed the way they interact with their commu-
nities” and over half of LIGO Livingston program undergraduates
said it “helped them decide to go into a STEM field or educational
field” [Inverness Research Associates, 2023]. Undergraduates of-
ten note soft-skills development, one said “My experience as a
LIGO docent has changed my life and how I interact with every-
one. From conducting my presentations at school, teaching my
kiddos, conducting business, or simply talking to others.”

2.6 Creating graphics

Unlike electromagnetic observatories, GW data does not naturally
lend itself to the stunning images that are commonplace through-
out astronomy. Nevertheless, visualisations, infographics and car-
toons [e.g., Kijbunchoo et al., 2016; Thompson et al., 2020] form
key parts of our outreach activities, e.g., infographics displaying
key facts accompany discoveries; simplified plots of results may be
created for Science Summaries, and artistic representations of our
sources may accompany press releases

Videos and images are also produced from numerical-relativity
simulations of sources and the GWs they emit. Since new sim-
ulations are often produced to better understand the physics of
novel sources, fresh visualisations have accompanied discovery an-
nouncements.

Images accompanying LVK discovery announcements have been
selected as NASA Astronomy Pictures of the Day, e.g., to ac-
company the first detection, an artistic representation of a binary
black hole coalescence (Figure 4) and a corresponding numerical-
relativity simulation were featured (11 and 12 February 2016), and
to accompany GW190521, an artistic representation of the GW
emission from two spinning black holes was featured (8 September
2020).

2.7 Employing multisensory resources

Sound is a common analogy when describing GWs. While GWs are
not sound, the GW frequencies observable by the LVK are similar to
audio frequencies of human hearing. The signals lend themselves
to audification (www.soundsofspacetime.org): the technical name
for the signal from a binary inspiral is a “chirp” in reference to its
sweep up in frequency.

GWs can also be communicated through touch. The GW150914
signal has been translated to a 3D-printable model, specifically
tailored to the needs of visually impaired people. By running fingers
along the edges of the shape, one can appreciate the features of a
GW and perceive the details of the signal evolving in time. This
design is freely available [EGO-Virgo, 2021], along with suggestions
for classroom activities.

The Tactile Universe (www.tactileuniverse.org) [Bonne et al.,
2018] has partnered with LVK groups to design tactile resource
sets for use with blind and vision-impaired pupils in upper sec-
ondary education. A mix of 3D-printable (Figure 5) and more ba-
sic tactile resources, paired with existing sonifications, are tied to
20 minute workshops about black holes and neutron stars, GW sig-
nals and detection, and core science topics like waves and gravity.
The 3D-printable resources, example lesson scripts and guides are
available on the website. Students have enjoyed interacting with
the tactile resources; teachers have praised the accessibility and
pacing of the workshops, and in post-session feedback, students
have demonstrated an understanding of the concepts discussed.

The audifications and tactile resources have also proved effec-
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Figure 4: The detector data for GW150914, and an artistic representation of its binary black hole source (credit: LIGO/National Science
Foundation/Aurore Simmonet/Somona State University).

Figure 5: A Tactile Universe 3D printed surface of the inspiral of
two black holes and the resulting GWs

tive at science festivals, with members of the public appreciating
having the diverse means of explaining unfamiliar concepts. This
demonstrates how providing multisensory resources makes ideas
accessible to a wider audience as well as more comprehensible to
existing audiences.

2.8 Combining art and music with science

Art, music, and science collaborations explore novel approaches
to GW communication, showcase the science through a different
point of view, and bring the topic to new audiences. Works have
been created by professional artists and musicians, and LVK mem-
bers [e.g., Azure et al., 2021]. Examples include music composi-
tions [Instituto de F́ısica Corpuscular, 2023; Penguin Cafe, 2023],
open land art installations [Virgo, 2022], museum exhibits [EGO,
2019] and novel musical instruments such as GravitySynth which
combines the technology of GW detection with modular synthe-
sisers [Trimble, 2024; Azure et al., 2021]. The LIGO-India blog
has a virtual gallery GWSciArt that showcases GW-inspired artis-
tic projects [LIGO-India, 2024c].

Combining art with science can help reach new audiences and
provide a memorable experience. For example, the art and science
festival Celebrating Einstein merged dance, music, and film with
GWs. Assessment of the festival audience demonstrated that those
who attended were a mix of those interested in science and art; that
non-physics experts gained knowledge (e.g., 75% of physics novices
improved their score between pre- and post-event surveys), and
that attendees typically had a positive emotional response to the
event [Grimberg et al., 2019]. Similarly, Into the Quadrivium, a col-
laboration between GW researchers and musicians, which blended
baroque and contemporary music with spoken-word explanations
of GW science, was positively received by the audience [Into the
Quadrivium, 2023].
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Table 2: Social-media followers (August 2024).

Platform Account Followers

X LIGO Scientific Collaboration 110, 600
European Gravitational Observatory
and Virgo

12, 500

KAGRA 2, 500
LIGO Hanford Observatory 10, 800
LIGO Livingston Observatory 5, 300
LIGO India 6, 700
LIGO Magazine 690

Facebook LIGO Scientific Collaboration 33, 000
European Gravitational Observatory
and Virgo

7, 000

LIGO Hanford Observatory 6, 100
LIGO Livingston Observatory 6, 800
LIGO India 9, 600

Instagram LIGO–Virgo 14, 900
LIGO India 5, 600

Mastodon
(Astrodon)

LIGO Scientific Collaboration 1, 500

2.9 Communicating through social and non-traditional
media

Non-traditional media provides an opportunity to present our sci-
ence to broad audiences. Activities like social-media posts, blogs,
and podcasts or interviews can communicate science in an informal
way.

Interviews have been hosted on the Spanish podcasts “Oscilador
armónico” [Cordero-Carrión et al., 2023] (7, 800 listens as of Au-
gust 2024), “A ciencia cierta” [Rivera, 2021] (33, 100 listens) and
“Coffee Break: Señal y Ruido” [Socas-Navarro, 2021] (40, 800
listens). The last podcast coined the term “gravitondas” (“gravi-
waves”) for GWs. Communicating with audiences in their local
language makes science more accessible. The podcast format is
more flexible than traditional radio programming allowing more
time and in-depth discussion needed to explain complicated ideas.

The LVK has several social-media accounts, for the Collabo-
rations and the observatory sites, across different platforms (Ta-
ble 2). The greater following for LIGO compared to Virgo and
KAGRA may be a consequence of the same bias that leads to
LIGO preferentially receiving credit. Content includes educational
resources, news stories, and discovery announcements. Special
posts are scheduled for events such as detection anniversaries or
the International Day of Women and Girls in Science. The ob-
servatory accounts often share posts about local news, such as
pictures from the sites or events at the science centres, while the
Collaboration accounts take the lead on big announcements.

Social-media content is reshared across platforms with suitable
adaptations. The microblogging X and Mastodon platforms are
well-suited to threads; these are useful for linking many resources
or explaining a topic from many angles. Facebook and Instagram
allow for longer posts, enabling more in-depth explanation per post,
but posts must be spaced further apart to avoid cluttering follow-
ers’ feeds. Across all platforms, the most popular posts often
feature a graphic or video (all Instagram posts include a graphic
or video), and hence these are sought whenever possible.

The different social-media platforms reach different numbers
of people and demographics. Table 3 shows metrics for the

GW230529 181500 discovery announcement (April 2024). While
X has the most views/users reached; Mastodon has the most shares
per follower (as a newer platform it potentially has a higher pro-
portion of active users), and Instagram has the most likes per
follower.

Social media allows the LVK to interact directly with the public,
and threads in response to questions have often proved popular.
On Reddit, the LVK has run occasional Ask-me-anything discus-
sions. The Ask-me-anything accompanying GW150914 has 2, 300
comments. Posting answers to questions online enables them to
be searched out in the future.

2.10 Using interactive technologies

Interactive apps and games are engaging and fun ways to con-
vey GW science. Interactive apps and games are engaging and
fun ways to convey GW science. Physical interaction with vir-
tual environments incorporates additional modes for audiences
to engage with content. Activities have ranged from com-
puter games [Carbone et al., 2012] (www.laserlabs.org; blackhole-
hunter.org) to classroom and science festival teaching with virtual
reality (www.scivr.com.au) [Parks, 2023] .

Mission Gravity [Bondell & Myers, 2021; Kersting et al., 2023]
is an interactive virtual-reality environment designed for secondary
school students to collaborate to better understand black holes
and neutron stars. Since 2018, the program has been delivered
to over 23,000 students across over 400 schools, as well as to
over 1,100 teachers through professional-development workshops.
One student reported: “The virtual reality component of it was
engaging and enjoyable [. . . ] I was able to understand ideas that
I previously struggled with.”

3 Case Study: GWTC-3

GW discoveries from the LVK are published in catalogs: papers
accompanied by data releases. GWTC-3 [Abbott et al., 2023a] is
the most recent of these, presenting results up to the end of the
third observing run. Thanks to the continued improvements in
detector sensitivity [Abbott et al., 2020b], the rate of discoveries
has increased with time, meaning that each catalog includes a
significant number of new GW candidates. GWTC-3 represents
the most sophisticated and comprehensive analysis published by
the LVK to date.

Production and publication of a catalog is a multi-year project
directly involving hundreds of experts. Given the significance of the
results and the importance of easy-to-use data releases, effective
communication is a priority. However, communication of catalog
results faces challenges: catalog results consist of comprehensive
analyses of many signals (making them overwhelming), and the
majority of detections have properties similar to those observed in
the past (lacking the excitement of a novel discovery).

For GWTC-3, the project team included a member responsi-
ble for coordinating communication and outreach activities from
the beginning. This embedding allowed for these activities to be
planned as the project progressed, developed in tandem with the
data releases, and coordinated with those compiling the results.
Delaying this work until the project was nearly complete may not
have left sufficient time to produce and review resources, and risked
the team being too exhausted to contribute to these tasks. LVK
paper teams typically have a designated person responsible for pro-
ducing data products and for writing the Science Summary, but
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Table 3: Social-media performance as of August 2024 for LIGO posts about GW230529 181500 (GW230529) and the GWTC-3 Orrery.
Statistics are not directly comparable between platforms but qualitatively similar. Numbers per follower are given in parentheses.

Platform
Post Metric X Facebook Instagram Mastodon

GW230529 Reposts/shares/boosts 155 (0.0014) 89 (0.0027) 72 (0.0048) 18 (0.0120)
Likes/reactions/favorites 328 (0.0030) 261 (0.0079) 662 (0.0444) 26 (0.0173)
Views/reach 46, 000 (0.42) 18, 300 (0.55) 5, 200 (0.35) n/a

Orrery Reposts/shares/boosts 113 (0.0010) 48 (0.0014) 51 (0.0034) 25 (0.0167)
Likes/reactions/favorites 350 (0.0032) 144 (0.0043) 813 (0.0546) 32 (0.0213)
Views/reach 192, 000 (1.74) 7, 800 (0.24) 9, 600 (0.64) n/a

these may not necessarily be integrated into the team through-
out the project, and there is not typically one person responsible
for coordinating communication and outreach more generally. We
recommend following an approach similar to GWTC-3 of having a
dedicated team member responsible for communication and out-
reach, and starting work on the resources early.

The variety of activities designed to communicate the discoveries
from GWTC-3 span the diverse range of audiences targeted and
platforms used by the LVK.

3.1 Sharing the people behind the science

LIGO Magazine issue 20 featured an 8 page article by 23 mem-
bers of the analyses, paper-writing, and engagement teams [Berry
et al., 2020]. They wrote about their experiences of working on
the catalog and associated results. Although the article authors
represent only a fraction of those providing input to GWTC-3, fea-
tures like this give readers a behind-the-scenes insight of working
on big LVK results.

3.2 Engaging academia

A series of LVK webinars were organised to coincide with the re-
lease of GWTC-3. The first on GWTC-2.1 [Abbott et al., 2024], a
reanalysis of previous data using updated methods consistent with
GWTC-3. Subsequent webinars presented the GWTC-3 results
and implications for cosmology, astrophysics and tests of general
relativity. Presenters were drawn from those who made key contri-
butions to the work, with preference given to early-career scientists,
and balancing geographic location and demographics.

The data release was a key component of the GWTC-3 results. It
included Jupyter notebooks and Python scripts to demonstrate use
and how to reproduce plots from the paper. As of August 2024, the
data release for the inferred source properties of the new GWTC-
3 detections is the most viewed of all Zenodo-hosted LVK data
releases, with approximately 8, 000 views (27, 500 file downloads);
the second most viewed is the equivalent set of results for the
GWTC-2.1 analysis, with approximately 5, 600 views (21, 800 file
downloads). The popularity of the data release indicates that the
community appreciates the value of the results, and understands
how to use data products.

As the detection rate increases, it becomes more difficult to man-
age all the analyses, and curate data releases that include all the
relevant results (especially if there have been multiple reanalyses
to obtain final results). We recommend automating the process
to reduce the chance of human error in data-release production,
and efforts are underway to develop such automation tools [e.g.,
Williams et al., 2023].

For GWTC-3, a Streamlit app was created to interac-
tively make plots of source parameters enabling users to cus-
tomise paper plots without needing to download data (gwtc3-
contours.streamlit.app/).

3.3 Writing reference texts

Like the paper itself, the GWTC-3 Science Summary [LIGO-Virgo-
KAGRA, 2021] had a broad scope to cover. It was written in
close collaboration between outreach experts and the analysis and
paper-writing teams. It includes background information needed
to understand the catalog, and a subset of highlight discoveries.
The summary has been translated into 9 languages.

A LVK news item, rather than a press release, was drafted for
GWTC-3. This was used by individual institutions to draft their
press releases. The decision to not have a LVK press release re-
flected the expectation that GWTC-3 would be more difficult to
communicate, and hence less attractive to write about, than a
single discovery. Despite this, several science journalists did write
articles about GWTC-3 [e.g., Carlise, 2021; Castelvecchi, 2021;
Plait, 2021]. This demonstrates that the LVK did at least par-
tially succeed in efforts to communicate the science of GWTC-3
to journalists, and (assuming similar communications efforts are
organised in the future) that there may be an audience for press
releases for future catalog releases.

Resources, including the news item and institutional press re-
leases, were made public at 01:00 UTC on Monday 8 November
2023. The time was chosen to coincide with the paper preprint
appearing on arXiv, while the date was chosen to correspond to the
predefined detector data release timeline. An embargo period was
offered from 18:00 UTC on Thursday 4 November when trusted
journalists could be contacted about the upcoming release. Pro-
viding such an embargo period gives time for journalists to prepare
and check their stories, which is beneficial; however, this embargo
period was mostly over the weekend. Therefore, for future discov-
ery announcements, it may be beneficial to have a longer embargo
period, or to choose the day of the week for release more carefully.

3.4 Creating graphics

Updates to some long-standing LVK visualisations were made for
GWTC-3. The new results were added to the Masses in the Stel-
lar Graveyard plot (Figure 6). This plot is now generated from
GWOSC data products, making it easy to add large numbers of de-
tections. An online version allows for customisable images [Geller
et al., 2024]. The LVK Orrery was also updated, which shows a
stylised animation of the GWTC-3 binaries.
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Figure 6: GWTC-3 version of Masses in the Stellar Graveyard (credit: LVK/Aaron Geller/Northwestern). The plot shows the known
masses of stellar-mass black holes and neutron stars observed electromagnetically and with GWs.

Figure 7: An artistic representation of GWTC-3 sources which
accompanied the journal publication (credit: Carl Knox/OzGrav
Swinburne).

New visualisations were also created. One was a poster reminis-
cent of a periodic table showing the catalog after each observing
period. The poster was used in a variety of articles, a double-page
LIGO Magazine spread [Knox, 2022], and in the GWTC-3 webinar.
An artistic representation of the detected sources in a box accom-
panied the publication in Physical Review X (Figure 7). An image
showing spectrograms for the 90 GWTC-3 signals was featured as
NASA Astronomy Picture of the Day (7 December 2021).

3.5 Employing multisensory resources

Low Mass Beats is a audification of the catalog, converting
masses into pitch for each black hole or neutron star: the greater
the mass, the lower the pitch. This lighthearted project pro-
vides an entertaining perspective on the catalog. (SoundCloud:
soundcloud.com/user-889003031)

3.6 Communicating through social and non-traditional
media

GWTC-3 material was shared via a social-media campaign in two
bursts using the hashtag #GWTC3. The first burst coincided with
the release of the preprint and associated data. Special attention
was given to advertising the webinars and data releases. The sec-
ond burst coincided with the publication of the journal article and
priority was given to any resources developed since the initial re-
lease, such as the Streamlit plotter and Low Mass Beats.

For both bursts, posts were spaced over multiple days to catch
the attention of people in different timezones. Material was trans-
lated into regional languages [LIGO-India, 2024d]. The pacing
also made it natural to integrate popular-science articles written
immediately after the release.

From the second burst, the most popular post was for the Orrery.
Statistics are shown in Table 3. It is generally less shared than the
GW230529 181500 post, but there were more posts for GWTC-3
than for GW230529 181500 spreading out attention: that num-
bers are comparable demonstrates that catalog results can capture
interest similarly to new detections. The Orrery has high X views
having been reposted by accounts with large followings.

Resources were subsequently reused, e.g., Low Mass Beats was
shared on Halloween because of its spooky sound, and the Orrery
was shared during NASA’s Black Hole Week.

The impact of the social-media campaign can be partially as-
sessed via the Altmetric score. As of August 2024, the GWTC-3
paper has a score of 714 (including 56 news outlets and 6Wikipedia
pages). This score is in the 99th percentile of all tracked outputs.
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4 Conclusions

GW astronomy is a new branch of astronomy. After decades of
research, the first observation was made in 2015, and the field has
grown rapidly since. These discoveries have been led by the LVK,
an international collaboration of thousands of scientists. Sharing
these discoveries has been a priority for the LVK. As a new field,
communication has been essential to both publicise and explain
results.

LVK activities span a range of audiences and media. Within the
LVK, different activities are run by different teams, some coordi-
nated Collaboration-wide, while others reflect individual interests.
This provides a rich environment, where science-communication
resources can be shared between different communications efforts.
Many resources are used in multiple contexts, such that utility
can be amplified beyond the original target, e.g., paper plots used
on social media, infographics in talks, and data audifications in
musical performances.

Communicating LVK discoveries has a unique set of challenges,
but each provides an opportunity:

• GWs are an unfamiliar means of performing astronomy. Unlike
traditional astronomy, GW astronomy does not directly image
sources. However, GW data is suitable for audification, and
a variety of tactile resources have been made. These make
GW astronomy accessible to people with vision impairments,
who are often excluded from accessible astronomy commu-
nication [Bell & Silverman, 2019], in addition to providing a
novel way to explain these physical concepts.

• LVK results are produced by large teams. This makes it diffi-
cult for those outside to understand how discoveries are made,
or to construct human-interest stories. However, this enables
emphasization of the importance of teamwork and interna-
tional cooperation to science. The LVK’s breakthroughs are
a contrast to the popular perception that scientific break-
throughs come from lone geniuses [Larivière et al., 2015; Ak-
snes & Aagaard, 2021]. The diversity of the LVK’s member-
ship also allows us to draw upon many different lived expe-
riences, and demonstrate that scientists may come from any
background.

• After the initial first observations, many detections were sim-
ilar to those discovered previously. The increase in the LVK’s
detection rate is an experimental triumph—what was once
extraordinary is now everyday. It is therefore necessary to
concentrate on the science enabled by a large set of detec-
tions. This has a benefit of reflecting that most scientific
progress comes from careful study rather than a dramatic
breakthrough.

Elements of each challenge may translate to other communication
efforts:

• When abstract or theoretical concepts are being communi-
cated, having diverse explanations (combining multiple views
of the concept and engaging multiple senses) may aid audi-
ence comprehension.

• When results come from large collaborations, which is increas-
ingly common in physics and astronomy [Smith, 2016; Bat-
tiston et al., 2019], drawing upon the diverse experiences of
collaboration members may help engage members of the pub-
lic with similar backgrounds.

• When a new field is founded, charting the way the field will
evolve long term may help increase scientific literacy regarding
how scientific progress is made through many small advance-
ments (in addition to through big discoveries).

Consequently, while we do not expect the exact circumstances
faced by the LVK will be replicated, we anticipate that insights into
GW-science communication may benefit others across science.

In communicating GW discoveries, the LVK has benefitted from
existing interest in black holes and space. It has also faced hurdles,
such as a tendency to misattribute discoveries to LIGO alone. This
highlights the importance of taking a holistic approach to planning
and reviewing communication: it is advantageous that an audience
correctly understands how science is done, as well as what the
discoveries are, and it cannot be assumed that just because the
audience is interested they will absorb all relevant information.

As GW astronomy continues to mature, we expect that com-
munication strategies will need to evolve to reflect both the state
of the field, and audience interest and awareness.
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