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Overview

e CBC sources

e CBC Signal in Ground Based detectors

e Match filtering

e Signal consistency tests—-> Chi-squared test
e Towards optimisation of signal consistency
e Ranking Statistics

e Machine learning and CBC searches



GW sources

The length of an observatory’s ‘baseline’ affects its sensitivity to the gravitational wave spectrum.
Ground-based observatories, such as LIGO, have a relatively short baseline and thus detect short wavelength
events. Pulsar timing arrays have the longest ‘baseline’ and so are sensitive to longer wavelengths.
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What makes the waves?
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CBC Sources

Sub-solar

IMNASSES

(White Dwartf, Neutron star,
Primordial Black hole)

NSBH




EM Neutron Stars

Geller | Northwestern

LIGO-Virgo-KAGRA | Aaron
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CBC Sources




CBC signal




CBC signals

(Frequency domain)
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Power spectral density
(Noise vs Signals)
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Time spent in the sensitive bend

(Low mass)

Time (s) Time (s)

To know more about signal morphology: see here



https://www.gw-indigo.org/tiki-index.php?page=Inspiralling+black-hole+binaries

Noise Power Spectral Density (PSD) calculation

L |
S (f) = lim — I dt n(t)e >/
T—oo 1 T/

e PSD can be calculated using Welch method

e Take a long enough strain data segment—-> Divide the segment into overlapping
sub-segments of equal length—-> Calculate the Discrete Fourier Transform—->

Take magnitude squared average over sub-segments —-> Power Spectral Density

e Used to whiten strain Data (Weigh-down the contribution from frequency bands
where noise is dominant)
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https://en.wikipedia.org/wiki/Welch's_method

LIGO search pipelines

(Low-Latency)

e SPIIR - Summed Parallel Infinite Impulse Response, uses IIR filter representation
and coherent search

e GstLAL - SVD reduced filtering, Time domain match filtering

e PyCBC Live - Uses rigorous signal-consistency and optimised FFT

e MBTA - Multi-Band Template Analysis

e c(WB - Coherent Wave Burst (Unmodeled search)
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Data from the LIGO Hanford Observatory (whitened and bandpassed)
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Computational issue with Matched-Filtering

*Large number of templates

Millions of
template in 04

CBC Template Bank

102 -

10° 1

BNS
NSBH
BBH

Each
template has
97% match

with
neighbour




No-Gaussian artefacts (Noise transients or Glitches)

18080Lines 140@Ripples Air_Compressor Blip Chirp Extremely_Loud Helix
Koi_Fish Light_Modulation Low_Frequency_Burst Low_Frequency_Lines None_of_the_Above Paired_Doves Power_Line
Repeating_Blips Scattered_Light Scratchy Tomte Violin_Mode Wandering_Line Whistle

14

Credit: GravitySpy

How to generate Q-transform: see here



https://gwpy.github.io/docs/2.1.3/examples/timeseries/qscan/

Probability density function
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Signal consistency tests | o
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Bruce Allen's )(2
(AKA power y° or traditional y?)

e Consistency of matched-filtering SNR contribution from for triggered template vs
Observed signal

 Used by PyCBC pipeline
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Sine-Gaussian waveform

- - 2 —4nfj(t — 1)
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e (litches with excess power in the
high frequency range 105

9.0

e This excess power is captured using
sine-Gaussian waveforms and
turned into a chi-squared test
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e Triggers with high chi-squared
value are rejected
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https://arxiv.org/pdf/1709.08974.pdf

Autocorrelation )(2 tests

e Used by SPIIR and GstLAL
pipeline

e Based on difference in

expected versus observed
SNR series

Cody Messick et al, 2017

Expected
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https://arxiv.org/pdf/1604.04324.pdf

Many )(25 —-> Unified framework
(Key to formulation of optimised y?)

T (triggered
template)

S (orthogonal to T)

lan Harry et al, 2011

) Sanjeev Dhurandhar et al, 2017
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.103018
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.83.084002

Ranking Statistics (How detection is made)

Examples
e Ranking statistics -
P(0.5,E.7, .0\ H,)
L = _,'_0}_> g GstLAL
—-> Combine the P(O,p,&%t, p,0|H)
calculated quantities like
SNR and chi-square
values to determine 1
significance 5=y (l (1 n ()(2)(%))) «  PyCBC
2 r

SPIIR uses K-Nearest Neighbour method
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https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

CBC searches with Machine Learning

e Match-filtering —-> computationally expensive
e Many works in last few years

e Machine learning networks have shown promising results in case of higher-mass
BBH searches

e ML Noise cleaning —-> Another way to improve search sensitivity

e Lower-mass searches still a challenge

e ML network are being used to calculate source properties  DeepChatterjee et al. 2019
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https://iopscience.iop.org/article/10.3847/1538-4357/ab8dbe

Summary

e CBC sources - BBH, NSBH and BNS. Also, SSM.

e Matched-filter—-> Primary filter

e Non-gaussian artefacts —-> main cause of concern in CBC searches
e Signal consistency tests like Chi-squared test provide solution

e Signal-Consistency test still improving

e CBC searches with Machine learning—-> Future?
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