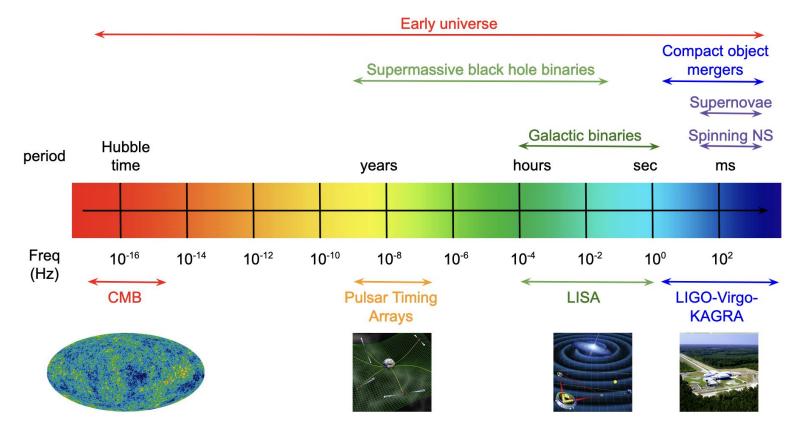


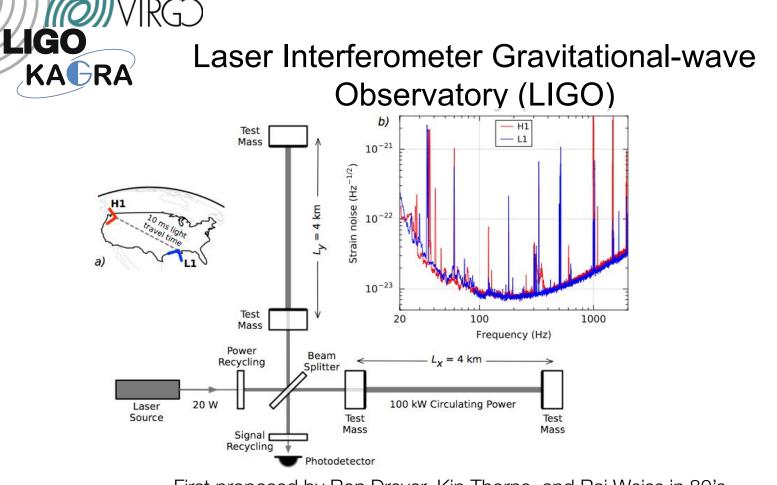
Gravitational-wave astronomy: Progress & Prospects


Patrick Brady, University of Wisconsin-Milwaukee

Symposium on Gravitational Waves 3 June 2024

https://dcc.ligo.org/G2401204

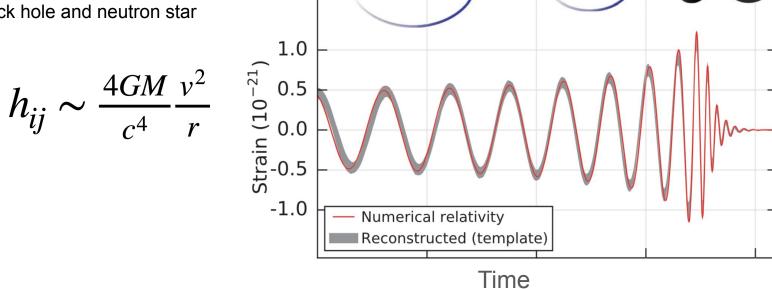
KAGRA Gravitational-wave spectrum



LIGO

LIGO KACRA

International Gravitational-Wave Observatory Network (IGWN)

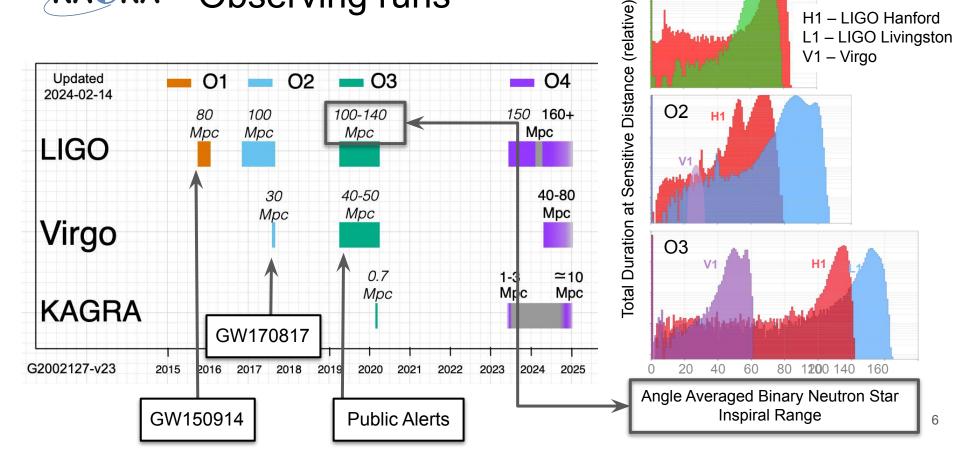

First proposed by Ron Drever, Kip Thorne, and Rai Weiss in 80's. First funding in 1992; civil construction ended 2000; Initial LIGO 2002-2010

4

Compact object mergers

Pairs of stellar-mass black holes, neutron stars, or a stellar-mass black hole and neutron star

Inspiral


B. P. Abbott et al. Phys. Rev. Lett. 116, 061102

Merger Ring-

down

Observing runs

01

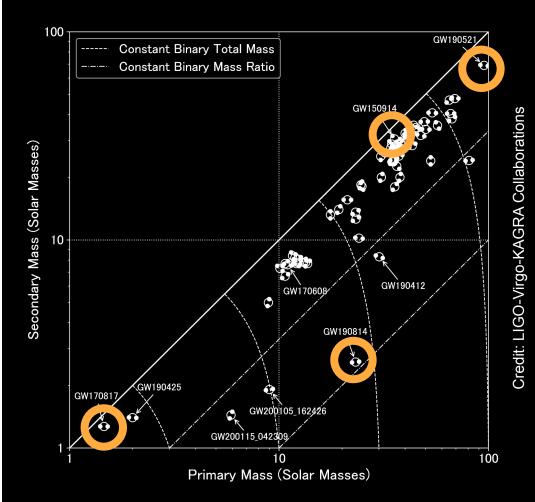
L1

H1

H1 – LIGO Hanford

160

6


Detections

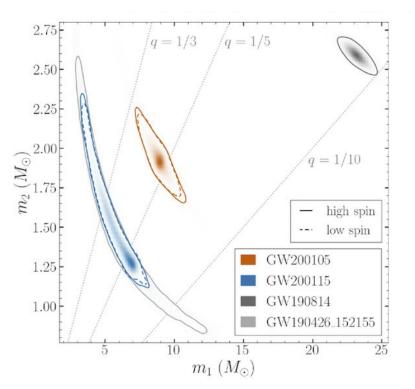
GW150914

- First astrophysical source Ο
- Binary black holes exist 0

GW170817

- Binary neutron star mergers are Ο gamma-ray burst progenitors
- GW190521
 - Black holes exist in pair 0 instability mass gap
- GW190814
 - Compact objects exist with Ο masses between 2-5 Msun

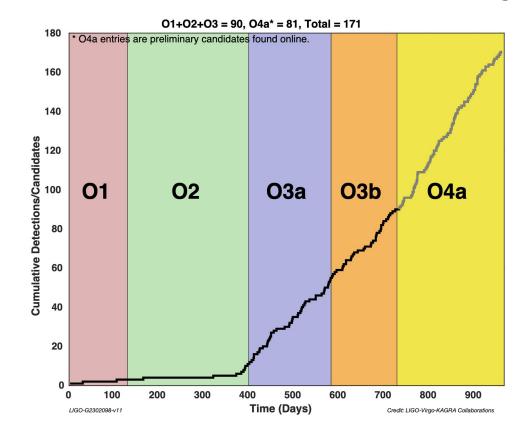
R. Abbott *et al* 2021 *ApJ*L **915** L5

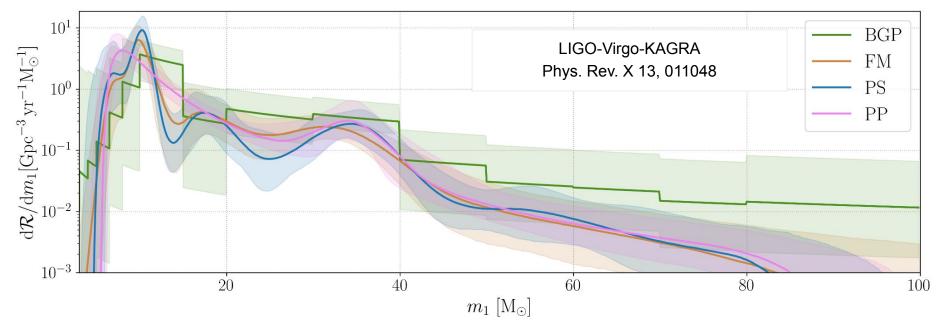

Mergers involving neutron stars

• GW170817 & GW190425

LIGO

KAGRA


- Binary neutron star (BNS) merger waves
- GW170817 & GRB 170817A
 - Fractional difference in speed of gravity and the speed of light is between -3 x 10⁻¹⁵ and 7 x 10⁻¹⁶
- GW170817 & AT 2017gfo
 - Binary neutron star mergers produce kilonova explosions that generate heavy elements
 - B. P. Abbott et al 2017 ApJL 848 L13


Detections versus time observing

LIGO

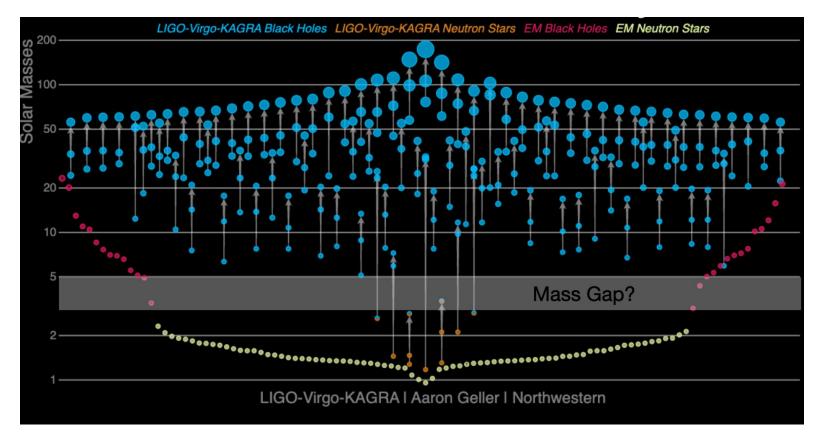
KAGRA

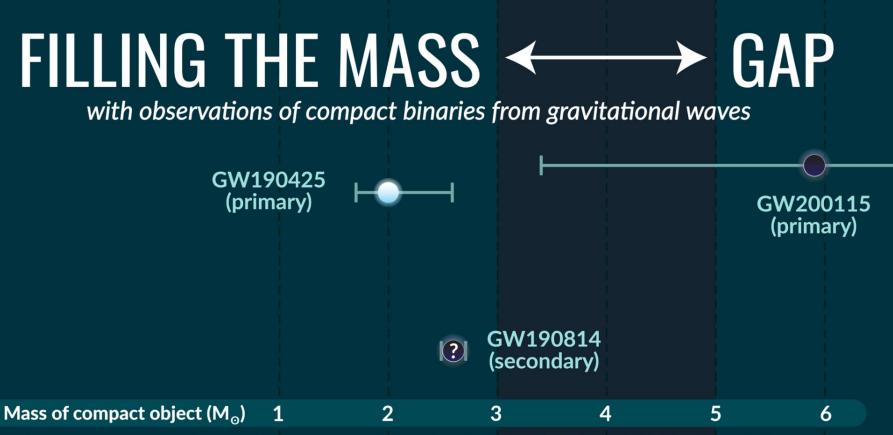
LIGO KACRA From one to many: measuring populations

Merger rate density as a function of primary mass using 3 non-parametric models compared to the power-law+peak (pp) model.

10

LIGO KACRA The fourth observing run (O4)


- O4a: 24 May 2023 16 Jan 2024, LIGO and KAGRA for 1 month
- O4b: 10 April 2024 Feb 2025, LIGO and Virgo
- Binary detection rates
 - O3 ~ 1 / 5 days
 - O4 ~ 1 / (2.8 days)
- Improved public alerts
 - Localization
 - Classification
 - Latency
 - Early-warning
 - Low-significance
- Improved sensitivity
 - > 150Mpc BNS range


04 Signifi	cant Detection Candidates:	81 (92 Total	- 11 Retracted)				
04 Low S	ignificance Detection Candi	dates: 1610	(Total)				
Show All F	Public Events						
Page 1 of 7. SORT: EVEN							
Event ID	Possible Source (Probability)	Cianificant	LITC	CCN	Location	EAD	Commonts
Event ID	Possible Source (Probability)	Significant	UTC	GCN	Location	FAR	Comments
Event ID S240109a	Passible Source (Probability) BBH (99%)	Significant Yes	UTC Jan. 9, 2024 05:04:31 UTC	GCN Circular Query	Location	FAR 1 per 4.3136 years	Comments
			Jan. 9, 2024	GCN Circular	Location		Comments
S240109a	ВВН (99%)	Yes	Jan. 9, 2024	GCN Circular Query Notices VOE GCN Circular	Location	1 per 4.3136 years	Comments
			Jan. 9, 2024 05:04:31 UTC	GCN Circular Query Notices VOE	Location		Comments
S240109a	ВВН (99%)	Yes	Jan. 9, 2024 05:04:31 UTC Jan. 7, 2024	GCN Circular Query Notices VOE GCN Circular Query	Location	1 per 4.3136 years	Comments

11

KAGRA Masses in the stellar graveyard

LIGO

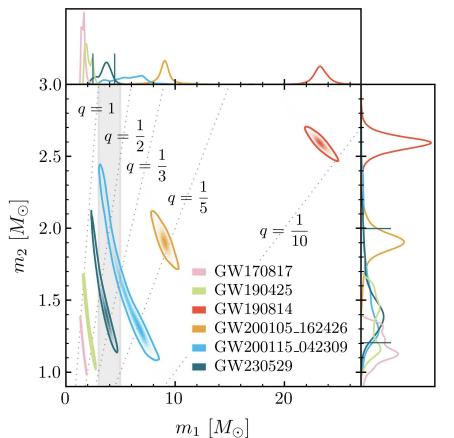


Includes components of compact binary mergers detected with a False Alarm Rate (FAR) of less than 0.25 per year

Figure credit: Shanika Galaudage / Observatoire de la Côte d'Azur

FILLING THE MASS ←

with observations of compact binaries from gravitational waves

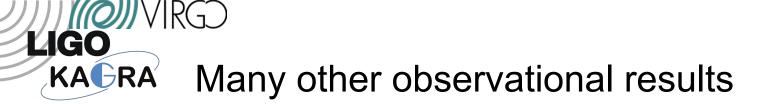


Includes components of compact binary mergers detected with a False Alarm Rate (FAR) of less than 0.25 per year

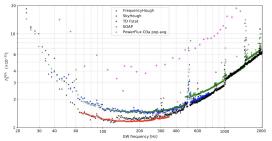
Figure credit: Shanika Galaudage / Observatoire de la Côte d'Azur

GAP

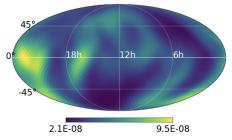
LIGO KACRA GW230529 - Properties

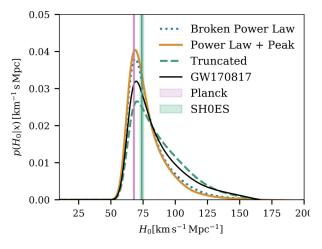


Primary mass m_1/M_{\odot}	$3.6\substack{+0.8 \\ -1.2}$
Secondary mass m_2/M_{\odot}	$1.4\substack{+0.6 \\ -0.2}$
Mass ratio $q = m_2/m_1$	$0.39\substack{+0.41 \\ -0.12}$
Total mass M/M_{\odot}	$5.1\substack{+0.6 \\ -0.6}$
Chirp mass \mathcal{M}/M_{\odot}	$1.94\substack{+0.04 \\ -0.04}$
Detector-frame chirp mass $(1+z)\mathcal{M}/M_{\odot}$	$2.026\substack{+0.002\\-0.002}$
Primary spin magnitude χ_1	$0.44\substack{+0.40\\-0.37}$
Effective inspiral-spin parameter $\chi_{\rm eff}$	$-0.10\substack{+0.12\\-0.17}$
Effective precessing-spin parameter $\chi_{\rm p}$	$0.40\substack{+0.39 \\ -0.30}$
Luminosity distance $D_{\rm L}/{\rm Mpc}$	201^{+102}_{-96}
Source redshift z	$0.04\substack{+0.02\\-0.02}$


LIGO-Virgo-KAGRA COllaboration https://arxiv.org/abs/2404.04248

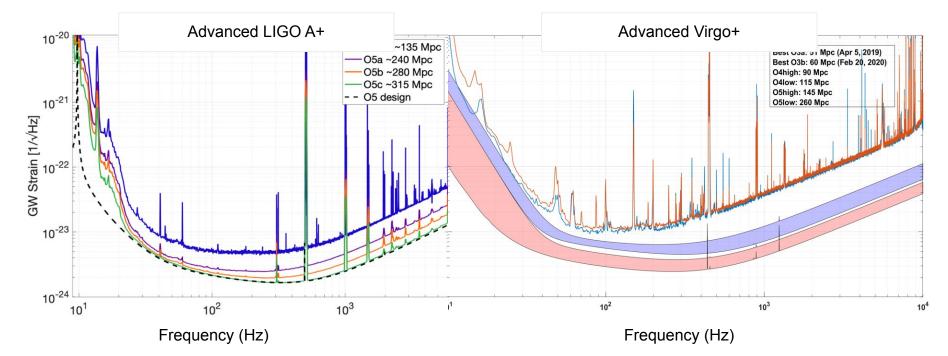
LIGO KAGRA Binary neutron star mergers


- GW170817 & GW190425
 - Binary neutron star (BNS) merger waves
- 04a
 - Doubled spacetime volume searched, no new BNS events.
 - \circ Based on O1+O2+O3 rates, expected ~ 0.4 7 new events.
- O4b (using public information)
 - Using naive O123+O4a rates, expect 0.2 3.5 new events in O4b.


Limits on waves from pulsars Phys. Rev. D 106, 102008 (2022)

Stochastic background limits Phys. Rev. D 105, 122002 (2022)

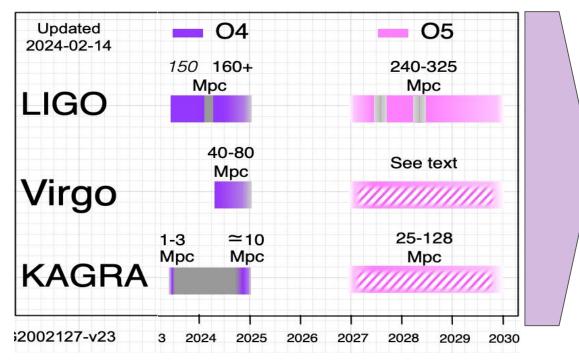
Hubble constant measurements Astrophys. J. 949, 76 (2023)



And much more!

Thanks to Dave Reitze & Giovanni Losurdo


KACRA Working towa


Full Power in the arm cavities: 750 kW Frequency-dependent Squeezing* level of 6 dB Test Masses with 2x lower coating thermal noise*

KAGRA will continue to work towards 130Mpc goal in O5

LIGO-Virgo-KAGRA anticipate observing to dovetail with next generation facilities

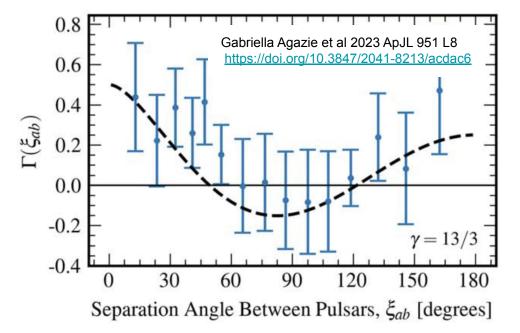
- Current thinking
 - Start is paced by upgrades after O4: 2 years gap.
 - Intersperse commissioning and observations
- Binary detection rates
 - O3 ~ 1 / 5 days
 - O4 ~ 1 / (2.8) days
 - \circ O5 ~ 3 / day
- Other science
 - Improved SNR
 - New sources?

https://observing.docs.ligo.org/plan/

- LIGO Aundha Observatory (LAO) is to be constructed in India and operated as part of the LIGO network in the 2030s.
- A[#]: targeted improvements to the LIGO detectors
 - Report of LSC post-O5 study group [Fritschel et al, https://dcc.ligo.org/LIGO-T2200287/public]
 - Achieve close to a factor of 2 amplitude sensitivity improvement with larger test masses, better seismic isolation, improved mirror coatings, higher laser power, better squeezing ...
 - Begin observing at the end of 2031 and observe for several years.
 - A[#] an engine for observational science and a pathfinder for next-generation technologies.
 - A network including LIGO A# detectors would be a cornerstone for multimessenger discovery.
- Virgo has scoped similar improvements, called VirgoNEXT, with similar timetable. KAGRA is focused on reaching its current target.

LIGO KACRA Observational Science with A[#]

- Probe the compact object binary population with unprecedented precision
 - \circ Masses, spins, sub-populations.
 - Clues about their formation and astrophysical environment.


•	Hubble constant measurement		Annual Detections					
	to sub-percent levels	Configuration	BNS	NSBH	BBH			
•	Black hole spectroscopy via	A+	135^{+172}_{-78}	24^{+34}_{-16}	740^{+940}_{-420}			
	sub-dominant modes	A [‡]	630_{-350}^{+790}	100^{+128}_{-58}	2100^{+2600}_{-1100}			
•	Neutron star radius	A^{\sharp} (A+ coatings)	260^{+320}_{-140}	45_{-27}^{+60}	1150_{-640}^{+1450}			
	measurements to sub-km	A^{\sharp} Wideband (A+ coatings)	200^{+250}_{-110}	40^{+54}_{-25}	970^{+1220}_{-540}			
•	Enlarge discovery space:	Voyager Deep	1280^{+1610}_{-710}	190_{-110}^{+240}	3100^{+3900}_{-1700}			
	nearby supernova, continuous	Voyager Wideband	730_{-410}^{+920}	129_{-74}^{+165}	$\begin{array}{r} 3100^{+3900}_{-1700} \\ 2300^{+2900}_{-1300} \end{array}$			
	wave sources, stochastic		-410	-14	-1300			

background

See Fritschel et al, https://dcc.ligo.org/LIGO-T2200287/public

Recent Pulsar Timing Observations

Hellings-Downs interpulsar correlations from a gravitational-wave background.

- Bayesian analysis ~ 3 sigma
- Frequentist analysis ~ 3.5 4 sigma

Possibly background from supermassive black hole binaries.

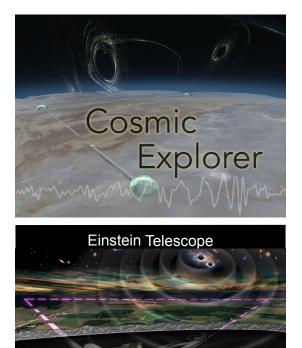
- NANOGrav G. Agazie et al 2023 ApJL 951 L8
- PPTA D. J. Reardon et al 2023 ApJL 951 L6
- EPTA and InPTA J. Antoniadis et al. A&A, to appear
- CPTA H. Xu et al 2023 Res. Astron. Astrophys. 23 075024

LISA mission

Gravitational waves are ripples in spacetime that alter the distances between objects. LISA will detect them by measuring subtle changes in the distances between **free-floating cubes** nestled within its three spacecraft.

Earth

Sun


* Changes in distances travelled by the laser beams are not to scale and extremely exaggerated

Powerful events such as **colliding black holes** shake the fabric of spacetime and cause gravitational waves

Free-floating golden cubes

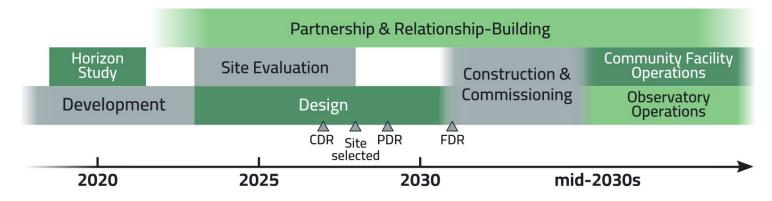
The launch of the three spacecraft is planned for 2035, on an Ariane 6 rocket.

KAGRA Next Generation Detectors

WVIRG

LIGO

S	cience	No CE		CE	with	2G			CE	with	ET		c	E, E	r, CE	Sout	h
Theme	Goals	2G	20	40	20+20	20+40	40+40	20	40	20+20	20+40	40+40	20	40	20+20	20+40	40+40
Black holes and	Black holes from the first stars																
neutron stars throughout cosmic	Seed black holes																
time	Formation and evolution of compact objects																
	Neutron star structure and composition																
Dynamics of dense	New phases in quantum chromodynamics																
matter	Chemical evolution of the universe																
	Gamma-ray burst jet engine								Q								
Extreme gravity and fundamental physics																	
Discovery potential																	
Technical risk																	


A Horizon Study for Cosmic Explorer https://arxiv.org/abs/2109.09882

LIGO KACRA Cosmic Explorer Timeline

A Submission to the NSF MPSAC ngGW Subcommittee https://dcc.cosmicexplorer.org/CE-P2300018/public

Top-level timeline showing a phased approach to design and construction.

Thank you!

LIGO KAGRA LIGO network is a cornerstone of MMA

• The number of detections per year for four different detector networks for binary neutron stars within z = 0.5

Metric	$\Omega_{90}~{ m (deg)}^2$							
Quality	≤ 100	≤ 10	≤ 1	apral				
3A [♯]	$1.2^{+1.8}_{-0.9}\times10^3$	$3.2^{+4.7}_{-2.5}\times10^2$	$5.0^{+11.0}_{-5.0} imes 10^{0}$	Sathyaprakash				
$CE20 + 2A^{\sharp}$	$8.6^{+13.3}_{-6.4}\times10^3$	$8.6^{+12.9}_{-6.8}\times10^2$	$1.7^{+3.3}_{-1.5}\times10^{1}$	يە تە م				
$CE40 + 2A^{\sharp}$	$9.8^{+15.1}_{-7.3} \times 10^3$	$9.7^{+14.6}_{-7.6}\times10^2$	$1.8^{+3.8}_{-1.6}\times10^{1}$	Gupta				
$CE40 + CE20 + 1A^{\sharp}$	$1.4^{+2.1}_{-1.0} \times 10^4$	$3.4^{+5.3}_{-2.6}\times10^3$	$9.7^{+15.7}_{-7.7}\times10^{1}$	sh G				

Pulsar Timing Observations

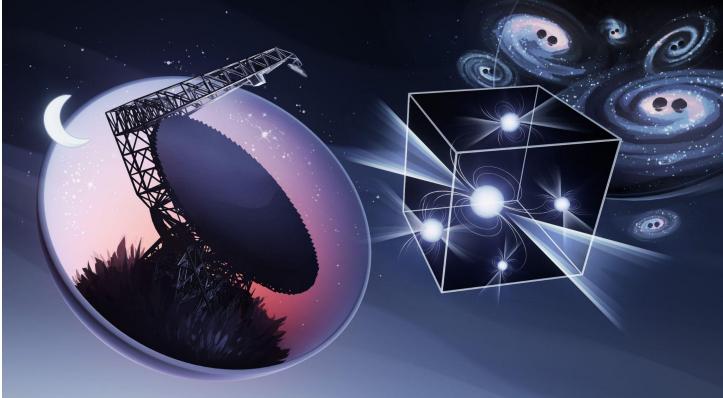
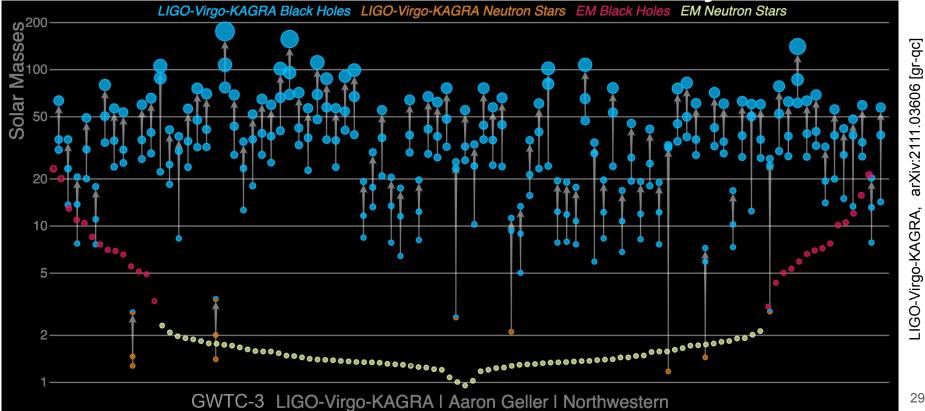
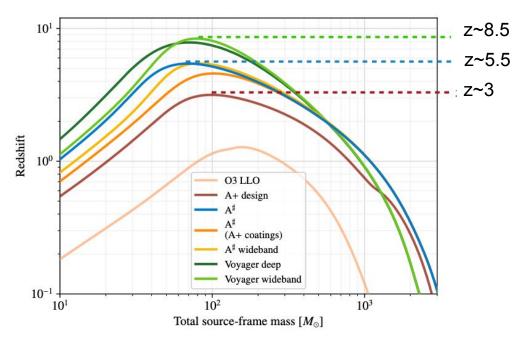
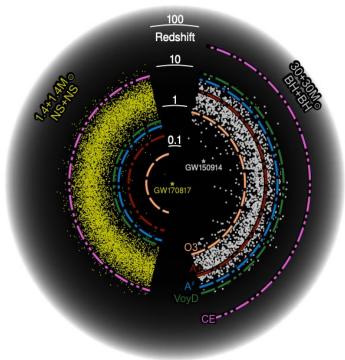
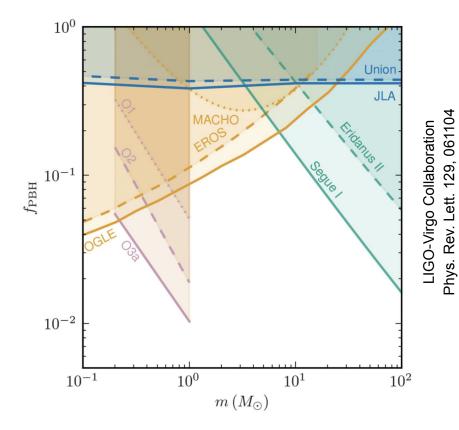



Illustration Credit


LIGO KAGRA


Gravitational-Wave Transient Catalog

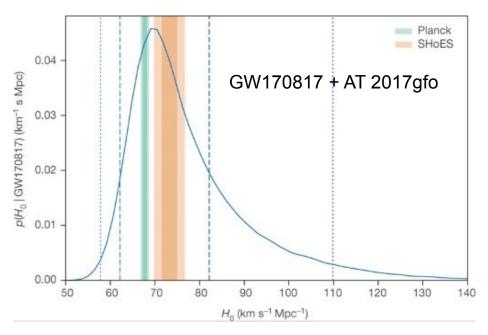
Horizon for optimally oriented and located binary mergers



See Fritschel et al, https://dcc.ligo.org/LIGO-T2200287/public

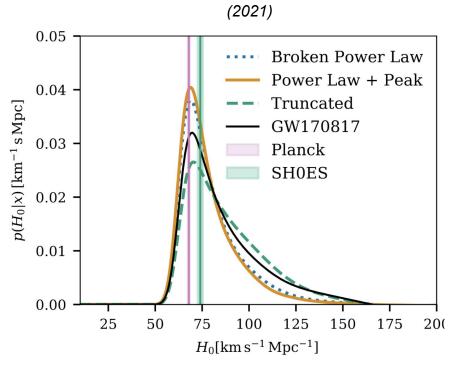
LIGO KACRA

Search for subsolar-mass binaries


- Search for compact binary mergers with at least one object of mass 0.2 1 Msun.
- No detections.
- Example constraints on fraction of dark matter in primordial black holes from an isotropic distribution of equal-mass binaries.

Cosmology with gravitational waves

- Gravitational waves from binaries are standard sirens
 - Measure the luminosity distance to the source and redshifted masses
 - Cannot measure redshift directly
- Get redshift some other way
 - Electromagnetic counterpart, e.g. GW 170817, GRB 170817A, AT 2017gfo
- Sub-percent accuracy with many
 - Cross correlate with galaxy redshifts [Schutz, Nature 323, 310 (1986)]
 - Mass scale imprinted on spectrum of detected binary mergers [Will M. Farr et al 2019 ApJL 883 L42]


B P Abbott *et al. Nature* **551**, 85–88 (2017) doi:10.1038/nature24471

KAGRA

Challenges for cosmology with GW

- Binaries with detectable EM counterparts are rare
 - With ~5-10 BNS mergers detectable in O4, expect ~1 detectable kilonova.
 - GRBs further away, but only a fraction beamed to Earth.
- Sub-percent accuracy with many
 - Completeness of galaxy catalogs decreases rapidly with redshift.
 - Mass scales are highly uncertain, e.g. maximum black hole mass from PISN, or must be measured simultaneously.

R Abbott et al. arXiv:2111.03604

Advanced LIGO

- From the beginning, facilities were planned to house multiple generations of detectors
- Initial LIGO: a necessary step to move to kilometer scale. Detection possible, not likely
- Advanced LIGO: detection probable for compact binaries, possible for other sources
 - Funding started in 2008; Livingston completed in mid 2014; Hanford completed at end of 2014
 - Plan to interleave observing with commissioning activities starting in 2015
- First detection of gravitational waves on 14 September 2015!