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Laser Interferometer Space Antenna (LISA)

e 3 spacecraft on heliocentric orbits, forming
triangular constellation

2.5 million km arm length

Sensitive band: 10~* Hz — 0.1 Hz

4 yr nominal mission lifetime

Led by ESA, partnered with NASA
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http://www.youtube.com/watch?v=x-k112InxfY

Credit: LISA Definition -
Study Report :

How does LISA work?

e Each spacecraft houses two lasers +
two free-floating test masses

e 6 laser “links” total

e Interfere pairs of incoming/local lasers
to measure relative displacement of test s
masses — GW strain

Measurement S/C to test mass Measurement S/C to test mass
— [ — — [ —

o / = 3 \ e e Test mass interferometer (TMI) for test mass
DT—EF | | wi_T m displacement relative to local optical bench
3 = e Inter-satellite interferometer (ISI) for

spacecraft-to-spacecraft measurement

«~——— S/Cto S/C measurement ——



What LISA will see

Question — How does GW frequency depend on the mass and radius of a binary?



What LISA will see

Question — How does GW frequency depend on mass and radius of a binary?
e Kepler’s third law:

GM
w2 R3

e Wider radius = lower frequency, LISA will see binaries with orbital periods of
minutes to hours

e Higher mass = higher frequency
e Question — How come LIGO does not see massive black hole mergers?

fGW — 2forb —



What LISA will see

Question — How come LIGO does not see massive black hole mergers?

e More massive black holes have larger Schwarzschild radii

e Two black holes will contact each other long before reaching LIGO band
e Merger happens at lower GW frequencies, in the LISA band
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Strain Amplitude Spectral Density [1/vV HZ]
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Strain Amplitude Spectral Density [1/vV HZ]
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Galactic binaries

e Composed of white dwarfs,
neutron stars, and black holes
e Persistent sources, of order 10*

individually resolvable

e “Verification binaries” already
identified with EM observations
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Strain Amplitude Spectral Density [1/vV HZ]
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Inspiral of black holes of few
10s of solar masses, like those v B Brares
seen merging in LIGO/Virgo
Eventually leave LISA band,
some may be observed later as

mergers on the ground!
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e One-way phase measurements
Time dela interferomet TDI dominated by laser frequency noise
y l'y ( ) e TDI technique developed to
Delayed Received

Laser No,se address this problem
Local Laser Noise GW Signal

{‘\‘A"* ] LZIC +M/WW§ ; LZ/‘ + L

Signals Measured

e Michelson TDI: X, Y, Z
e Noise-orthogonal TDI: A, E, T (null) Source: LISA Definition Study Report
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Time delay interferometry (TDI)
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Signal from a galactic binary

e (Galactic binaries are LISA's most numerous sources
e Modelled as sinusoids with a slow spin-up due to GW emission

h(t) = Aet®® B(t) = ¢o + 27 ft + 7 [t

e Question — What else determines how the signal will be measured by LISA?

19



Signal from a galactic binary

e (Galactic binaries are LISA's most numerous sources
Modelled as sinusoids with a slow spin-up due to GW emission

h(t) = Aet®® B(t) = ¢o + 21 ft + 7 [t

Question — What else determines how the signal will be measured by LISA?
Also need to know the sky location of the source
e Question — What direction should the signal come from to maximize signal-to-noise?

Orthogonal to Parallel to plane
plane of LISA of LISA

20



X-TDI strain
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LISA data analysis

Source: LISA Data Challenge 2a

Time [days]

High source count
Transient and continuous
signals

Astrophysical and
instrumental backgrounds
Glitches, gaps

How do we fit for all these
sources? Need a global fit
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LISA global fit

e Fit for all astrophysical sources and instrument noise simultaneously
e Outputs full catalog of sources w/ estimated parameters
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LISA global fit

Change in estimated residual
noise with increasing
observation time

Question — Why does the
galactic foreground appear to
decrease over time?

-
=

23



LISA global fit

Change in estimated residual
noise with increasing
observation time

Question — Why does the
galactic foreground appear to
decrease over time?

Certain foreground sources
become individually
resolvable, can be fitted out
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Summary

e LISA will open up the mHz GW spectrum
e Enormous diversity of astrophysical sources, galactic and extragalactic

e Broad discovery space

o Census of galactic compact binaries
Late-stage stellar evolution
Binary formation and evolution channels
Formation of massive black holes
Galaxy evolution
Cosmology
o Tests of GR

e Global fit presents an interesting data analysis problem
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