

Seismic Platform Interferometer (SPI) Pathfinder

Joshua Freed, Jeff Kissel, Sina Koehlenbeck, Brian Lantz, Arnaud Pele, Eddie Sanchez, Jason Oberling, Matthew Heintze, Calum Torrie, Gabriele Vajente, Peter Fritschel, Michele Zanolin, ...

The Problem?

G2401322

HAM: Horizontal Access Module (Vacuum Chamber)

Tilt-to-Horizontal Coupling

GS13s – Inertial Sensors **CPS** – Displacement Sensors

Sensor Noise because lever is very short $\ell \approx 1 \text{m}$

The Dream: Integrated Collection of Sensor Upgrades

The First Step: SPI Pathfinder

Expected SPI PIT Performance

G2401322

SPI PIT +x +x +ry = +pitch

We expect improve platform RY performance by as much as 10-50x between 0.08 - 10 Hz with SPI PIT.

Displacement \DeltaL between two ISI:

 $\Delta L = \delta L_{\rm meas} - \delta L_{\rm ref}$

Expected SPI LONG Performance

Laser frequency noise for FSS: LHO Logbook: 73976

Laser frequency noise RefCav: LHO logbook: <u>38817</u>

> We won't be able to get all the way down to SPI LONG noise we'll still be limited by rolling off GS13 noise, its still MUCH less than current performance.

Timeline

	2024				2025				2026				2027			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	O4b Observing run						A+ installation and Commiss						oning		O5a	
	Final B Design					nd Inst ithfind HAM	Installation finder AM23 L1 Staff vis gain experien			Evaluate Performance with full IFO sit to Update design as needed, as ce well as expand the design to other HAMs			Bu in H1 L1 L1	uild ar stall fo HAM HAM HAM	nd or 45 23 45	
We a																

Extra Slides (If time permits)

<u>G2401322</u>

Measuring YAW w/ ONE-WAY Optical Lever

Since we are using QPDs we also get the YAW "for free"

Expected SPI YAW Performance

It is unclear if the Differential Y / L noise limit for SPI YAW is better than Local RZ

But that is what the pathfinder is for!!

Superposition (sum) with slightly different frequencies

$$\cos \omega_1 + \cos \omega_2 = 2\cos \frac{\omega_1 - \omega_2}{2}\cos \frac{\omega_1 + \omega_2}{2}$$

Made up of 2 components, sum and difference, of the frequencies of the original signals

Photodiode Output sees power which is the square of this signal

Power Output on Photodiode (not to scale)

The true signal is the Sum Power Signal, however, the frequency is so high (about 3×10^{14} Hz in pathfinder case) that the photodiode will only detect the average power of the signal Beat Note (4096 Hz in pathfinder case)

Doppler Shift

The Output will be fluctuating at the beat note frequency

Any longitudinal shifts between the tables will doppler shift the frequency of the beam

This will cause a shift in the frequency of the beat output signal which produces our error signal

Signal 1

