

Overview of the

LIGO-Virgo-KAGRA Collaboration

Jenne Driggers

Detection Lead Scientist LIGO Hanford Observatory California Institute of Technology

LSC Operations Division Chair

GWANW 25 June 2024

APS DGRAV Vice Chair

The LIGO-Virgo-KAGRA Collaboration is a collaboration of collaborations

- Each Collaboration brings an Observatory, and a large set of scientists who work on:
 - The gravitational wave detectors themselves
 - Advanced instrumental techniques to improve current and future versions of the detectors
 - Data analysis
 - Online / low latency ("right now!")
 - Offline (more detailed look, but after more data has been gathered)
 - Rapid human response to Significant Candidates
 - Theoretical work to interpret the astrophysics that comes from our detections
 - Service to the Collaboration (eg "chair" a working group)
 - Communicating our science outside the collaboration
 - And more!

An Outdated Map

LSC Member Institutions: (a) out of date, and (b) no V+K Institutions

Together, the LVK has more than 2600 members!

Driggers, LIGO-G2401327

GWANW, 25 June 2024

Coincident Observing Plan

Updated 2024-06-14	— 01	02	— O3	— O4	— O5
LIGO	80 Mpc	100 Мрс	100-140 Мрс	<i>150</i> -160+ Мрс	240-325 Мрс
Virgo		30 Мрс	40-50 Мрс	40-80 Мрс) See text
KAGRA			0.7 Mpc	1-3 ≃1 Mpc Mp	0 25-128 c Mpc
G2002127-v25	1 1 2015 2016	2017 2018 2	1 1 1 019 2020 2021	2022 2023 2024 2025	2026 2027 2028 2029 2030

The O5 start dates, duration, and sensitivities are current best guesses, and will likely be adjusted as we approach that run for all the detectors (see text).

https://observing.docs.ligo.org/plan/#

Interferometer Performance

Sensitivity is impressive from all our detectors!

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA I Aaron Geller | Northwestern

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars Solar Masses 20 10 0 5 Mass Gap? 2

LIGO-Virgo-KAGRA I Aaron Geller | Northwestern

GWTC-1 = O1, O2

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

GWTC-2.1 = O1, O2, O3a

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

GWTC-3 = O1, O2, O3a, O3b

O4 Detection Published!

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

GWTC-3 = O1, O2, O3a, O3b

Cumulative Candidates

