

O UNIVERSITY OF OREGON

UO LIGO Group

Graduate Students

Matthew Ball Lance Blagg* Samantha Callos* Gino Carrillo Genevieve Connolly* Jaxen Godfrey Adrian Helmling-Cornell Benjamin Mannix JD Merritt Sangeet Paul

Undergraduate Students Joshua lascau Holden Jose

> Faculty Ben Farr Ray Frey Robert Schofield

*LSC Fellows, LHO, Summer, Fall 2024

GRB Afterglows

GRB 060526

Application of 2D-Bsplines in search of q-chi_eff correlations

Gino Carrillo

Sangeet Paul

Parametric PSDs

Simultaneous inference of CBC and noise $\frac{1}{10^{-49}}$ parameters. 10^{-49}

Sangeet Paul

Hierarchical Mergers

Model: BH Coagulation.

Bayesian inference of natal populations, dynamical environments, merger rates, and merger ancestries.

Jaxen Godfrey

BBH Subpopulation Models

Cosmic Cousins: 10 Msun Subpopulation (update)

New Project: Building a Model for Stable Mass Transfer BHs

-> Directly model mass distributions of BBH progenitor stars (dashed curve) that undergo stable mass transfer prior to BBH formation -> prelim results: 10 Msun peak consistent with SMT channel

Environmental noise measurement in aLIGO

•The non-GW environment – are the candidates GW signals?

UO responsible for development and maintenance of instrumentation (PEM) required to measure the non-GW environment and its coupling to DARM

(Schofield, students)

•Commissioning, noise hunting and mitigation (Schofield, et al)

Quantitative measurement of the effect of environmental noise

Using the coupling fns to vet GW candidates in low-ish latency – the PEMcheck DQR app

Adrian Helmling-Cornell, Schofield, Nguyen, Frey to appear in CQG

Lightning-induced coherent magnetic noise

Matthew Ball, Schofield, Frey PRD 107, 022004 (2023)

Astrophysical inference from NS f-modes

- X-ray flares from magnetars accompany a major perturbation, such as crust cracking or B-field rearrangement
- These probably ring up mechanical modes: f-modes → GWs
- Can use a detection or non-detection to infer NS properties
- Use Bilby PE code to infer parameters

f-modes as damped sinusoids (Andersson & Kokkotas

$$\nu_{GW}(kHz) \approx 0.78 + 1.635 \left(\frac{\overline{M}}{\overline{R}^3}\right)^{1/2}$$
$$\frac{1}{\tau_{GW}(s)} \approx \frac{\overline{M}^3}{\overline{R}^4} \left[22.85 - 14.65 \left(\frac{\overline{M}}{\overline{R}}\right)\right]$$

Matthew Ball, Frey, Merfeld arXiv:2310.15315

Distance/frequency space where 10% of candidates could be detected with SNR>3 for current/future detectors

Vela Glitch of April 29, 2024

Radio observations:

- Rotational frequency changed: $\frac{\Delta f}{f} \sim 2.4 \times 10^{-6}$
- Time of glitch known to ~ +/- 4 s

An impulse which can ring up f-modes ? → analysis ~ magnetar flare Vela distance: 267 pc

GWs from collapsars

Ben Mannix, Genevieve Connolly

- Collapsars: The collapse of massive, highly rotating evolved stars
- Progenitors of (most) long GRBs (gamma-ray light curves longer than ~2s)
- LGRB placement follows star formation
 - Most distant z~8
 - Nearest 40 Mpc (pre-LIGO)
 - Redshifts largely unmeasured (few %)
- Collapsar accretion disks long considered to be potential GW sources – non-homogeneities

 van Puttten, Piro & Pfahl
- Recent full hydrodynamic simulations optimistic
- GWs from wobbling jets (top)
- GWs from generic accretion disk formation (bottom)
- The GW emission extends well outside the GRB
 - Searches triggered by GRB detection
 - Searches triggered by Type Ib,c SN

Adrian Helmling-Cornell

Blip Glitches and Cosmic Strings

Machine learning methods for distinguishing GWs from cosmic strings from glitches in the detector, parameter estimation with injected GW CS signals, 04 burst search (Helmling-Cornell)

What should we do with current facilities after 05?

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO -

LIGO SCIENTIFIC COLLABORATION

Technical Note	LIGO-T2200287-v2	2022/11/09
Report from the LSC Post-O5 Study Group		

Post-O5 Study Group

Distribution of this document: LIGO Scientific Collaboration

