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ABSTRACT5

The precession of Binary Black Holes (BBHs) can be informative of the formation channel of the6

system; weakly/non-precessing systems are likely to have formed through binary stellar evolution,7

while strongly precessing systems may have formed dynamically. Despite the growing number of LIGO8

sources, evidence of precession is strongly debated in the literature. The parameter χp is currently used9

to evaluate the precession of observed BBH systems. However, χp is difficult to constrain to a narrow10

range of values for most events and can yield vanishing prior probability density at the aligned-spin11

configuration. We present an alternative spin precession parameter, the cosine of the angle between the12

total spin and the orbital angular momentum cos θLS, that provides better localization of a precession13

value and allows a non-zero probability of aligned spins. We begin by testing cos θLS, χp, and other14

parameters against synthetic data with known values to determine the best statistical measurement of15

precession. We then use cos θLS to evaluate the precession in events from O3, the third observing run16

of LIGO and Virgo.17

1. MOTIVATION18

The properties of binary black hole (BBH) mergers19

observed from LIGO-Virgo-KAGRA detections can be20

informative of the formation channel of the system (e.g.,21

Mandel & Farmer 2022). Two primary theories of the22

origin of BBHs exist. The first is that the systems were23

formed through stellar evolutionary channels. Namely,24

as a binary system between two intermediately massive25

stars evolved, both stars remained in orbit, with the re-26

sulting black holes (BHs) surviving the supernovae at27

the end of the stars’ lives. Eventually, due to the emis-28

sion of gravitational waves (GWs), the two coalesced29

into a single BH through a BH-BH merger.30

Alternatively, the BBH system may have been formed31

dynamically. Through the gravitational interactions32

of stars and black holes in dense stellar environments33

such as globular clusters and galactic nuclei, scattering34

events can place two, previously unrelated BHs into or-35

bit around each other. This would most likely be from a36

three-body interaction in which an intruding BH kicks a37

less massive companion from a the binary the other BH38

is in, yielding a BBH system.39

One way to potentially differentiate between these two40

formation channels is through analyzing the precession41

of the orbit. The BHs in BBH systems that formed42

from binary stellar evolution likely have spins S⃗ that43

are aligned with the orbital angular momentum L⃗. This44

stems from the preferential alignment of stellar rotation45

axes with the L⃗ of the binary, initialized by the angular46

momentum in stellar nurseries. Additional complica-47

tions such as kicks from the supernovae of companion48

stars in the binary may misalign spins. However, the49

details of these processes are still not well modeled, so50

approximations to the effects must be taken into ac-51

count. The simplest of approximations neglect these52

kicks, claiming that S⃗ and L⃗ remain aligned through53

the entire binary evolution process through the BBH54

merger.55

Conversely, dynamically formed BBH systems are56

much more likely to have isotropic spin distributions.57

Because there is no initial relationship between S⃗ and58

L⃗, the alignment of S⃗ and L⃗ is just as likely as the mis-59

alignment of the two vectors. This assumption leads60

to the prediction that the orbits of dynamically formed61

BBH systems are more likely to precess than the orbits62

of binary stellar evolution remnants.63

By understanding the precession of a BBH system, in-64

formation regarding the formation channel of the binary65

can be gleaned. In particular, analyzing the precession66

found in LIGO-Virgo data from O1, O2, and O3 can67

help inform predictions of the origins of known BBH68

merger candidates. With just under 100 candidates of69

BBH systems as of O3 (Abbott et al. 2023; Mehta et al.70
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2023; Nitz et al. 2023), statistical conclusions can begin71

to be made about the nature of BBH precession and,72

therefore, the origin of the BBH systems.73

These conclusions may be especially useful in under-74

standing the nature of binary evolution, dense stellar75

environments, and dynamical interactions.76

Currently, there exists a parameter χp that has been77

used to describe the precession of the orbit. However,78

claims of individual precessing candidates are contro-79

versial (Hannam et al. 2022; Payne et al. 2022). That80

is because this parameter is not necessarily very infor-81

mative of the individual precession of a BBH system.82

The issues with χp are described in detail in Section 2.83

This summer, we focus on defining a new parameter that84

can better constrain orbital precession of BBH systems.85

The progress made so far is detailed in Section 3, and86

the challenges encountered are outlined in Section 487

2. PROBLEM88

The effective precession parameter currently used to89

describe the precession of a BBH system, χp, is defined90

as91

χp = max

(
χ1 sin θS1L,

q(4q + 3)

3q + 4
χ2 sin θS2L

)
, (1)92

where χi is the dimensionless spin parameter of the BH93

i, q is the mass ratio m2/m1 (where m1 > m2), and θSiL94

is the angle between the spin S⃗ of BH i and the orbital95

angular momentum L⃗ (Schmidt et al. 2015). When χp =96

0, the system is not precessing, and when χp = 1, the97

system is strongly precessing.98

This parameter has two main issues that make it dif-99

ficult to analyze precession: Both can be seen by the100

posterior distributions in Figure 1. Most of the poste-101

rior distributions for χp are very broad. A broad pos-102

terior distribution is not very informative on the true103

value associated with the data, as it makes it difficult104

to constrain the value to a reasonable range. The sec-105

ond is displayed by the prior distribution in Figure 1:106

the prior distribution of χp sharply approaches 0 as χp107

approaches 0. In mathematical terms, π(χp = 0) = 0.108

The first issue makes χp a poor parameter statistically.109

The second issue fails to address a fundamental goal of110

the χp parameter: to put to test the hypothesis that111

the spins are aligned. However, by initially assuming112

the spins are misaligned (as the probability of alignment113

is 0 in the prior in χp), the parameter fails to reject114

aligned spins. This is because the posterior distribution115

is defined as the prior distribution times the likelihood,116

so if the prior is 0 at a value, then the posterior will117

always be 0 at that value.118

This summer, we aim to propose an alternative pa-119

rameter that addresses these two issues. Namely, we120

Figure 1. The χp distributions of several observations from
Abbott et al. (2023). Note that most of the posteriors (up-
per curves) are very broad, only marginally differing from
the prior distribution (lower curves). For the more localized
posteriors, the localization only occurs at low values of χp

where the peak in the prior occurs, and these events have
high levels of uncertainty of astrophysical origin.

want a parameter that has a narrow, well-constrained121

distribution and contains the true precession value, and122

we want a parameter that does not reject aligned spins123

in the prior.124
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Figure 2. The geometry of a BBH system. The spins of
each black hole are denoted by S⃗i (with the total spin Stot =
S⃗1 + S⃗2), the orbital angular momentum is expressed as L⃗,
and the total angular momentum (L⃗+ S⃗1 + S⃗2) is J⃗ . θLS is
the angle between L⃗ and S⃗tot. β is the angle between J⃗ and
L⃗.

3. ACCOMPLISHMENTS SO FAR125

Using the geometry of the BBH merger outlined in126

Figure 2, two alternative parameters were initially se-127

lected based on the geometry of the system. First is θLS,128

the angle between the L⃗ and total spin S⃗tot = S⃗1 + S⃗2.129

This angle provides a direct geometric understanding130

of the relationship between S⃗tot and L⃗, fundamentally131

relating to the orbital precession. The second is β,132

the angle between L⃗ and the total angular momentum133

J⃗ = S⃗tot + L⃗. β is especially promising because, as134

a precession indicator, it impacts the magnitude of the135

amplitude modulations in the waveform (Fairhurst et al.136

2020). Particularly, the parameter b = tan(β/2) is di-137

rectly used to compute the waveform. However, unlike138

β, θLS, and χp, b has infinite bounds, making it more dif-139

ficult to constrain a “maximum” precession. Regardless,140

θLS and β share the same issue with χp in the sense that141

(under an isotropic spin prior) their probability densities142

both tend towards zero when S⃗ and L⃗ are aligned. To143

combat this issue, we consider the cosine of the angles,144

cos θLS and cosβ. This coordinate shift to cosine is cho-145

sen because it yields a non-zero probability of aligned146

spins in the prior.147

In order to measure how informative the three param-148

eters (χp, cos θLS, and cosβ) are, we needed to test them149

on known values. As the exact values of the main param-150

eters from LIGO-Virgo-KAGRA sources are not known,151

we instead used synthetic data with posteriors formed152

from known injections. These injections were generated153

assuming an isotropic spin distribution. In other words,154

all true angles between L⃗ and S⃗ are equally likely in the155

synthetic data. We used roughly 3000 posteriors with156

known injection values in this data set that was used.1157

Using the posterior distributions obtained from the158

injected samples, we constructed several functions to159

convert the raw (posterior) data into a posterior distri-160

bution of the parameters cosβ, cos θLS, and χp. Initial161

examinations of the effectiveness of each parameter for162

a randomly selected case are shown in Figure 3.163

However, in order to evaluate how informative each164

parameter is most effectively, we ran a statistical signif-165

icance test, starting from the Neyman-Pearson Lemma.166

This is the strongest test for comparing two hypothe-167

ses, H0 and H1, against each other (in this case, having168

the S⃗tot isotropically misaligned (H0) or aligned (H1)169

with L⃗). This test is defined the likelihood ratio of two170

hypotheses, expressed as171

Λ =
p(d | H1)

p(d | H0)
(2)172

(Neyman & Pearson 1933). If the probability of H1 is173

greater than the probability of H0, the ratio is greater174

than 1. A threshold to eliminate the null hypothesis H0175

can be set.176

Each hypothesis can be a set of parameters that yield177

some result. For the 1-dimensional case,178

H0 : θ ∼ π(θ) (3)179

H1 : θ = θ∗. (4)180

In other words, H0 is the initial estimate of the prob-181

ability distribution isotropic spin alignment, and H1 is182

the value corresponding to S⃗tot and L⃗ alignment. The183

aligned-spin model is said to be nested in the isotropic-184

spin model because it has fewer parameter and it can185

be recovered as a particular case of the isotropic spin186

model, in which its internal parameters (spin tilts) have187

been set to a specific value. This allows us to rewrite188

the likelihood ratio (2) as follows.189

Using the relationship between the likelihood L, the190

posterior P, the prior π, and the evidence Z,191

P =
Lπ

Z
(5)192

and the definitions of H0 and H1, we can express the193

likelihood p(d | H1) as194

p(d | H1)=p(d | θ∗) (6)195

p(d | θ∗)=L (7)196

L=
p(θ∗ | d, H0) p(d | H0)

π(θ∗ | H0)
. (8)197

1 The injections and posterior distributions can be found at https:
//zenodo.org/records/10910135.

https://zenodo.org/records/10910135
https://zenodo.org/records/10910135
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Figure 3. The posterior distributions of four parameters for a randomly selected, low-mass injection (Injection 364). Although
each distribution contains the true, injected value, there are varying degrees of the breadth of each posterior distribution around
the injected value. χp has a very broad distribution over accepted values, making it difficult to pinpoint its true value (vertical
red line) without knowing it beforehand. For the same data, cos θLS has a slightly more defined distribution around the true
value. β has a narrower distribution, whereas cosβ has the narrowest distribution of the four parameters. It is important to
note that this is a general trend found across the data, but it is not necessarily the case for all posteriors. Indeed, there are
some parameters in which χp retains a sharply defined peak in the posterior. A more quantitative value is introduced later that
can statistically evaluate how good the parameter is for each injection.

Plugging this into Equation (2), we get198

p(θ∗ | d, H0)

π(θ∗ | H0)
. (9)199

The ratio in Equation (9) is called the Savage-Dickey200

density ratio and can be used to estimate the likelihood201

ratio (Bayes factor) between two nested models. How-202

ever, a BBH system is not 1-dimensional, as it is defined203

by many parameters. Although precession is not neces-204

sarily based on a single parameter, our goal is to find205

a single parameter that can provide significant informa-206

tion on the precession of the system. We can express207

θ as a multidimensional parameter that contains a sin-208

gle parameter x that preserves the relevant precession209

information and all other unrelated parameters θ′ as210

θ = (x, θ′) (10)211

We can then define a new Hypothesis H̃1 that remains212

as close to H1 as possible while only being based on one213

parameter. We choose H̃1 to differ from H0 by only one214

parameter as this will allow us to test simplified popu-215

lation models that only consider very few BBH param-216

eters at a time. Ideally, there should be a single value217

of x = x∗ that allows H0 to be the same as H̃1. That218

is, in an isotropic spin distribution (H0), there should219

be only one orientation of the vectors that gives aligned220
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Figure 4. Savage-Dickey ratios for the three tested parameters. Each point represents an injection and associated parameter
estimation. The SDR used is between the hypotheses that the spins are aligned rather than isotropic. The true, injected value
is on the horizontal axis, while the Savage-Dickey ratio is on the vertical axis. The color bar symbolizes the strength of the
signal h given the injected signal strength. The likelihood ratio for χp is strongly clustered around values ranging from ∼ 1,
making it a poor test of spin alignment. Meanwhile, the likelihood ratio for cos θLS is slightly more informative. Because it
spans several orders of magnitude, strongly precessing BBH systems (cos θLS ∼ −1) would be much more likely than weakly
precessing systems to be ruled out as having aligned spins. Of the three parameters, β seems to be the most informative. The
Savage-Dickey ratios that define β of the data span many orders of magnitude with a high accuracy of correctly interpreting the
alignment of the spins. Generally, the SDRs for coordinate shifts of the same variable, such as from β to cosβ, should retain
the same values. The slight discrepancies stem from deviations in the binned probability densities of the injection distribution.

spins H̃1 (again, based on a single parameter).2 This is221

expressed as222

π(θ′ | x∗, H̃1) = π(θ′ | x∗, H0), (11)223

and thus,224

π(θ | H̃1) = δ(x− x∗)π(θ
′ | x∗, H0). (12)225

Assuming that a single value x contains all the available226

information about precession, it follows that p(d | H1) ≈227

p(d | H̃1). Using the same process as in Equations (7-228

2 This approximation does neglect some information. For example,
if the two spins have vertical components of S⃗ that align with L⃗
but the horizontal components of their spins cancel, this simpli-
fication fails to identify the spin misalignment in the system.

10), we can express p(d | H̃1) as229

p(d | H̃1)=p(d | x∗, H̃1) (13)230

=p(d | x∗, H0) (14)231

=
p(x∗ | d, H0)p(d | H0)

π(x∗ | H0)
, (15)232

and plugging Equation (15) into Equation (2), we get233

the revised ratio234

Λ=
p(d | H̃1)

p(d | H0)
(16)235

=

p(x∗|d,H0)p(d|H0)
π(x∗|H0)

p(d | H0)
(17)236

=
p(x∗ | d,H0)

π(x∗ | H0)
(18)237
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This ratio, called the Savage-Dickey Ratio (SDR), pro-238

vides a simpler way to compare the competing hypothe-239

ses with the use of a single parameter, allowing for a240

more quantitative way to evaluate the most informative241

parameter on the alignment of S⃗tot and L⃗.242

Using the SDR, we demonstrate in Figure 4 that243

χp is not very informative about the alignment of S⃗244

and L⃗, while parameters based on β (β, cosβ) are the245

most informative about the alignment of S⃗ and L⃗ out246

of the three parameters tested. Currently, this analy-247

sis provides a strong incentive to evaluate the strength248

of the orbital precession of actual LIGO-Virgo-KAGRA249

sources using cosβ as the precession parameter in place250

of χp. This is because cosβ (χp) yields the highest (low-251

est) SDR for aligned (misaligned) spins. To choose the252

parameter that best defines the precession, we plan to253

employ another quantitative test to summarize the SDR254

information of each parameter in a single value.255

3.1. Comparisons to Other Spin Parameters256

Although χp is currently in use as a parameter, an-257

other spin parameter, χeff , exists and is used to describe258

the mass-weighted average spin aligned with the orbital259

angular momentum. χeff is usually much better mea-260

sured that χp, but it provides fundamentally different261

information from χp despite the two providing informa-262

tion on the spin. In order to ensure that the proposed263

alternative parameters to χp are also providing unique264

information not obtained from χeff , we also needed to265

compare the SDRs of the new parameters to the likeli-266

hood ratios of χeff . If there is a correlation between the267

two, then it means that the information present in one268

parameter (e.g., cosβ) can also be found from χeff , mak-269

ing it less unique of a parameter. Figure 5 demonstrates270

that cosβ provides unique information from χeff .271

4. OBSTACLES ENCOUNTERED272

4.1. Indeterminate Savage-Dickey Ratios273

One issue I encountered while running the analysis of274

the likelihood ratio involved the shape of the prior of χp275

and β. For all the isotropic injections, there was not a276

single Savage-Dickey Ratio for β that was greater than 1277

which was unexpected behavior. As both of these values278

approach 0 (no precession/aligned spins), the probabil-279

ity of the prior also approaches 0. This property makes280

it difficult for the SD ratio to be evaluated at 0. Using281

Equation (18), we can express this as282

lim
β, χp→ 0

p(Aligned Spins | d)
π(Aligned Spins)

→ 0

0
. (19)283

As this expression is in indeterminate form, we can use284

L’Hôpital’s Rule to redefine this equation as285

lim
β, χp→ 0

p′(Aligned Spins | d)
π′(Aligned Spins)

. (20)286

We aimed to redefine p′ and π′. We began by assuming287

a small area ε under the curve close to 0 for both curves288

(where εp = επ). Each triangle then has a base qp and289

qπ. This makes the height of the triangle h = 2ε
q , ulti-290

mately defining p′ = 2ε
q2p

and π′ = 2ε
q2π
. The ratio of the291

two derivatives then is defined as292

p′

π′ =
q2π
q2p

. (21)293

The geometry of this derivation is outlined in Figure 6294

This approach of substituting Equation (21) in for295

Equation (18) allowed for a much more reasonable set296

of SDRs for both χp and β. We also tested it for several297

ε values (ε = 0.003, 0.005, 0.007, 0.01) and found that298

the shape of the resulting Savage-Dickey Ratio plots was299

relatively insensitive to the ε value when ε is small.300

5. UPDATES SINCE INTERIM REPORT 1301

5.1. Selection Effects in Synthetic Posteriors302

As mentioned earlier, the synthetic data is generated303

based on an isotropic distribution of spin angles. How-304

ever, the data is also filtered to only allow events that305

would have signals recognizable by LIGO. As the mass of306

the BHs in the system increase, selection effects begin to307

occur. Most notably, the frequency of the BBHmerger is308

inversely proportional to the mass, fmerger ∝ 1/M . This309

means that more massive BBHs merge at lower frequen-310

cies. The alignment of S⃗ and L⃗ also affects the frequency311

of the merger: highly misaligned S⃗ and L⃗ merge more312

quickly at lower frequencies. These two effects cause the313

final frequency of high-mass, strongly precessing merg-314

ers to occur at low frequencies, potentially being unde-315

tectable by LIGO.316

5.2. Altering the Savage-Dickey Ratio of the Angle317

Between The Total Spin and Orbital Angular318

Momentum319

Equation (18) is used to evaluate SDR for a hypothe-320

sis described by a single parameter. The synthetic injec-321

tions used to construct the posteriors used for the anal-322

ysis were based on a population with isotropic spin dis-323

tributions, where all orientations of cos θLS are equally324

likely. This means that π(Aligned Spins) = 0.5. How-325

ever, the data is then filtered to only allow events that326

would be detectable by LIGO. The selection effects out-327

lined in Section 5.1 mean that the prior of cos θLS is not328

necessarily flat, as more massive, highly precessing can-329

didates are more difficult to observe. The shape of each330

prior based on the mass distribution is presented in Fig-331
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Figure 5. The Savage-Dickey ratios of the tested parameters plotted against the likelihood ratios of χeff for the low-mass
injections. The data are colored based on the total spin of the system. There is little correlation between the SD ratios for cosβ
and the likelihood ratios of χeff , meaning that the information provided from cosβ is unique from that of χeff . The same is true
for β (which is expected as cosβ is a coordinate transformation of β) and for χp. However, given this data, cos θLS appears
to be more informative than χeff . This is because the highest values of the SD ratio for cos θLS strongly inform the value of
χeff , while the highest likelihood ratios for χeff retain a high range of SD ratio values for cos θLS. Ultimately, it appears that
parameters based on β provide unique information from χeff , giving credence to its use as an alternative precession parameter.

Figure 6. The geometry used to derive Equation (21).

ure 7. When initially calculating cos θLS, we used Equa-332

tion (18) with π(Aligned Spins) = 0.5 as an analytic so-333

lution accounting for a flat cos θLS prior. To get a more334

accurate evaluation of the SDRs for cos θLS, we altered335

the value of the prior of cos θLS to be equal to the proba-336

bility density of cos θLS = 1, estimated from a histogram337

of the injected samples. When accounting for the selec-338

tion effects, which tend to increase π(Aligned Spins),339

the SDR of cos θLS decreased by as much as a factor of340

2. This makes cos θLS better at rejecting aligned spins341

for highly precessing candidates and about as effective342

at confirming aligned spins for non-precessing systems343

as cosβ and χp.344

6. CHOOSING A PARAMETER345

6.1. Evaluating the Divergence of Isotropic and346

Aligned Spin Distributions347

Although χp seems to be less informative than cosβ348

and cos θLS by looking at the trend of the SDRs, it be-349
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Figure 7. The probability density distribution of injections
for the three mass distributions. The data was initially gen-
erated to have a flat prior regardless of mass, but as the mass
increases, the probability density of having aligned S⃗ and L⃗
increase. This is due to the filtering of events that exclusively
selects events that can be detected by LIGO, as described in
Section 5.1.

came difficult to compare the effectiveness of cosβ or350

cos θLS as they are both relatively effective. The syn-351

thetic posteriors for each set of mass distributions con-352

tain just over 1000 values, leaving over 3000 SDR values.353

One way to summarize the effectiveness of each parame-354

ter across all samples is to measure the Kullback-Leibler355

Divergence DKL, a test that evaluates the difference be-356

tween two distributions. In particular, we can use this to357

evaluate the difference between the likelihoods of aligned358

and isotropic spin distributions. By maximizing DKL359

between the two distributions with our parameter, we360

could find the parameter that yields the most divergent361

set of distributions. The Kullback-Leibler Divergence362

between these two likelihoods is defined as363

DKL(p(d | H0) || p(d | H̃1))364

=

∫
dd p(d | H0) log2

p(d | H0)

p(d | H̃1)
, (22)365

which can be approximated as366

DKL ≈ 1

N

∑
dj∼H0

log2
p(dj | H0)

p(dj | H̃1)
. (23)367

However, we have shown in Equations (16-18) that the368

inverse of this ratio of likelihoods can be expressed as369

the ratio of the posterior to the prior. Incorporating370

Table 1. DKL(p(d | H0) || p(d | H̃1)) (bits)

M/M⊙ χp cos θLS β cos β b

(1, 5) 1.0 3.0 2.9 2.4 2.9

(5, 25) 1.7 2.9 1.8 2.1 1.8

(25, 125) 0.9 2.0 0.9 1.0 0.9

Notes: The DKL values of each parameter comparing the distribu-
tions of aligned to isotropic spins. The “Mass” column corresponds to
one of three mass distributions of the injections used to construct the
posteriors.

this result, we can express the divergence as371

DKL=
1

N

∑
dj∼H0

log2
π(x∗ | H0)

p(x∗ | d, H0)
(24)372

=− 1

N

∑
dj∼H0

log2 SDR. (25)373

The DKL values for each parameter across the three374

distributions used in this study are reported in Table 1.375

χp consistently has the lowest DKL while cos θLS con-376

sistently has the highest. This means that χp is the377

least effective at distinguishing between the isotropic378

and aligned spin distributions while cos θLS is the best.379

We expect DKL(β) = DKL(cosβ) = DKL(b), but this is380

not the case, likely for the same reason(s) that the SDR381

values are not consistent between the three coordinate382

systems of β. Regardless, none of the DKL values for383

any coordinate of β in any mass distribution are greater384

than that of cos θLS. Additionally, as the distribution385

goes to higher masses, it becomes more difficult to dis-386

tinguish between isotropic and aligned spins, especially387

between β and χp.388

Given these results, it appears that cos θLS is the389

strongest parameter at distinguishing misaligned spins390

from aligned spins, while χp is the weakest.391

6.2. Relationship to Other Parameters392

Although cos θLS appears to most accurately diagnose393

the precession of a BBH system, it is important to com-394

pare it to other parameters. We have already shown395

that the mass of the BBH system influences which events396

may be detected by LIGO. However, it is also important397

to recognize further relationships with other parameters.398

Most prominently is the relationship with the total spin.399

Figure 8 demonstrates that cos θLS is more effective at400

rejecting aligned spins for highly precessing systems with401

a high total spin.402

7. POPULATION INFERENCE403
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Figure 8. The updated SDRs for cos θLS colored by the
total spin. Higher spins tend to have the lowest SDR values.
This makes cos θLS better at confirming precession for BBHs
with high spins.

Now that an alternative parameter, cos θLS, has been404

defined, we can begin population inference. By analyz-405

ing loud signals in the LIGO strain data, called triggers,406

with a high likelihood of astrophysical origin, we can407

evaluate the precession using cos θLS.408

For any N events in LIGO data, Na of these events are409

of astrophysical origin, while Nb of these events come410

from background noise. The population has a set of411

hyperparameters λ that influence the detected data d.412

The probability that the event is of astrophysical origin413

is defined as414

pastro =
dNa(λ)

dNa(λ) + dNb
. (26)415

By establishing a significance metric, the false-alarm416

rate, we can set a threshold for which triggers to analyze417

based on how likely they are to stem from astrophysical418

origin. Assuming some arbitrary set of parameters that419

describes a population model λ0, the probability of a420

trigger occurring is defined as421

P (Ntrig, di | λ) ∝ e−Na(λ)

×
Ntrig∏
i=1

[
dNa(λ)

dNa(λ0)

∣∣∣∣
di

pastro,i(λ0)

+ (1− pastro,i(λ0))

] (27)422

This is derived in detail in Roulet et al. (2020). The like-423

lihood for the population model can be evaluated from424

posterior samples for all events while using pipeline in-425

jections to quantify the search sensitivity and the signif-426

icance of each of the events above the minimum thresh-427

old. Currently, we are lacking the posterior samples for428

all events.429

By identifying triggers with high pastro through a pop-430

ulation model, we then evaluated events that are aligned431

with those in the GWTC-3 catalogue. We are currently432

in the process of using the strain data from each detector433

and a flat cos θLS prior to construct samples that model434

the posterior distributions of each parameter. Using435

these base parameters, we can then construct posterior436

distributions for our newly introduced spin-precession437

parameters, following the same analysis processes that438

we used to analyze the synthetic data that we used to439

originally constrain the precession parameters.440

We have already shown that the posterior distribution441

of cos θLS is better localized than that of χp in Figure 3.442

That means that any event with a localized cos θLS ≪ 1443

is much more likely to be precessing than a non-zero χp444

which will likely have a broad posterior distribution.445

At the time of writing this report, we have analyzed a446

single event, GW190917, which is a marginal event that447

is likely a merger between a BH and a neutron star. The448

distributions of χp and cosβ are shown in Figure 9. The449

distribution of χp is very broad, while cos θLS is much450

more sharply concentrated at -1, albeit retaining a rela-451

tively broad distribution with a non-zero probability of452

cos θLS = 1. Although this shape of cos θLS is promising453

for a precessing candidate, this event has of a relatively454

low pastro (Abbott et al. 2023). However, we hope to455

analyze all events in GWTC-3, allowing for an analysis456

of more confident events and potentially confirm preces-457

sion in other cases. We hope to find an event with a458

strongly localized probability of cos θLS ̸= 1 with a very459

low/zero probability of alignment.460

8. FUTURE PLANS461

As mentioned above, we aim to sample each event in462

GWTC-3 and construct corresponding posterior distri-463

butions. We then would like to re-evaluate the preces-464

sion of each event using cos θLS.465
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Figure 9. The probability density distribution of χp and cos θLS for the marginal NSBH event GW190917. This event has
high misalignment as predicted by cos θLS. Although the distribution of χp also peaks at a non-zero value, it retains a broad
distribution, making it more difficult to evaluate the true value of precession.
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