GWANW 2024 Group Update WWU

Icy Mirrors, Gravity, and Outreach

Svenja Fleischer Western Washington University

Western Washington University (WWU)

- Public university in Bellingham, WA, primarily undergraduate institution, ~16,000 students
- Random trivia: WWU is the northernmost university in the Lower 48!

(c) Google Maps

LIGO @ Western Washington University

- WWU has a LIGO group since 2021: SF and currently 3 undergraduate students
- two other students just graduated: congratulations Douglas Slater and Jackson Larsen!

Group Projects WWU

- Ice formation on cold test mass surfaces in cryogenic GW detectors
- An interactive exhibit for LexC: quad-suspension model
- Some torsion-balance work with the UW Eotwash Group

Icy mirrors in cryogenic gravitational wave detectors: background

Operating future gravitational wave detectors at cryogenic temperatures would have some attractive benefits:

- improved material properties (for <u>some</u> materials); : high thermal conductivity of mirror substrate allows for much greater circulating laser power
- decreased thermal noise $\propto \sqrt{T}$

But: new challenges related to cryogenics, different wavelength!

Current cryogenic GW detector concepts:

KAGRA, Einstein Telescope (ET), LIGO Voyager

Oli del Rio

for comparison: fused silica @RT ~1 W/(m K) 10 undoped singlecrystal bulk 10^{3} undoped sinale 10^{2} doped single 10 crystal layer undoped polydoped polycrystal layer crystal laver 10 100 Temperature (K)

ermal Conductivity (W/m·K)

from:

McConnell et al., J. Microelectromech. Syst. 10, 360 (2001)

An Uninvited Guest Among the Coating Layers...

Observed in KAGRA: freezing-out of residual gas on cold test mass surfaces

100

strain noise [1/vHz]

- mostly amorphous water ice from roomtemperature parts of the vacuum system
- can be reduced, but will always need a clear line of sight to the RT parts of the vacuum system
- affects optical and mechanical properties (reflectivity, loss, absorption, thermal noise, scatter, ...)
- water ice has **very strong absorption** around 1550nm and 2000nm

20 K

300

250

This calculation appears to overestimate the absorption in ultrathin layers – but still: maximum tolerable ice layer for LIGO Voyager estimated to be around 20-30nm!

from Hasegawa et al., Phys. Rev. D 99, 022003 (2019)

from J. Steinlechner, I. Martin, Phys. Rev. Res. 1, 013008 (2019)

The WWU Optical Cryostat

Idea: build a clean, modular, LN₂-cooled cryostat with versatile optical access for a systematic study of ice layers on optical surfaces (and other things).

The WWU Optical Cryostat: Testing

- cryostat setup complete and successfully tested:
 - achieved ~5x10⁻⁹ mbar vacuum (ion pump, no vibration)
 - demonstrated operation between about 90K and room temperature @ sample holder

Monitoring layer thickness by ellipsometry

• can measure sub-nanometer layers!

- measure ratio of complex reflection coefficients $ho\!=\!r_p\,/\,r_s\!=\! an\psi\,e^{i\Delta}$
- compare to model of the surface layers
 - \rightarrow fit model parameters to match!

Looking for ice!

- at RT (no ice): fit oxide layer thickness and angle of incidence $\rightarrow d=2.23(05) \,\mathrm{nm}$
- cool down, measure ρ over time: change in first few hours, then plateau
 - best fit ice layer thickness: < 0.65 nm
 - − explain change from RT? \rightarrow fit n, k:

n=3.827(44) nm k=0.008(42) nm

 χ^2 as a function of fit parameters

0.01

0.00

0.02

0.03

0.05

0.06

0.07

0.04

Optical Cryostat: Next Steps

- so far no sign of ice formation found in clean system (over ~1.5 days); repeat test with worse vacuum (no bakeout)!
- reduce liquid nitrogen consumption rate to enable longer experiments
- add precise dosing mechanism for water vapor
- correct for viewport birefringence (currently just increasing error) and reexamine angular errors
- start exploring ice layers!
- ice removal with laser?
- uses beyond ice layers?

Oli del Rio and Leah Vizmeg are working on this project.

Interactive quad suspension model for LExC

Veronica Russ is building an interactive model of an aLIGO quad suspension system for LExC:

- demonstrate passive isolation by moving suspension point with fixed amplitude but variable frequency
- would like to have a large enough amplitude for a visually impressive demonstration
- portable size for other uses (traveling exhibit)

Other Things: WEP Test with Superconductors

In collaboration with the University of Washington Eotwash group: a test of the weak equivalence principle (WEP) with superconducting test bodies, using a cryogenic torsion balance.

Thank you for your attention!

LIGO @ Western Students:

- Oli del Rio
- Veronica Russ
- Leah Vizmeg

just graduated:

- Jackson Larsen
- Douglas Slater

Funding for this project is provided by the National Science Foundation under grant award no. 2208090.

