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1 Introduction

In 1915, Einstein published his general theory of relativity [1]. He conjectured that gravity
is the result of masses curving spacetime, and as a consequence, massive objects moving in
spacetime produce gravitational waves. The propagation of these gravitational waves offers
a new way to observe the universe As unlike electromagnetic radiation, gravitational waves
interact very weakly with matter, and can travel through the universe almost unimpeded. It
wasn’t until 2015, a full century later, that the first direct detection of gravitational waves
was achieved by the Laser Interferometer Gravitational-Wave Observatory (LIGO) [2].

LIGO uses modified Michelson interferometers to detect gravitational waves. The light in the
interferometers are in antiphase, and without any disturbances, destructively interfere. The
expansion and contraction of spacetime by gravitational waves causes microscopic changes
in the length of the detectors, resulting in the light being out of antiphase. As a result, the
light will no longer interfere, and this change in length can be measured by a power detector.
However, this concept is only possible if the mirrors of the interferometer are perfectly still,
but the mirrors are subject to seismic, thermal, and other sources of noise. Therefore, the
crux of this project lies in the feedback control of these mirrors, to build robustness against
noise.

2 Background

2.1 Interferometer Topology

In this report, we focus on the locking of the Power-Recycled Michelson Interferometer
(PRMI) configuration of the 40m interferometer. This setup corresponds to the case where
the End Test Mass X (ETMX), End Test Mass Y (ETMY), and the Signal Recycling Mirror
(SRM) optics are intentionally misaligned, preventing these optics from forming resonant
cavities. We define degrees of freedom that we are concrened with, these lengths are: the
Michelson length (MICH), which is the difference in the lengths from the beam splitter (BS)
to each input test mass (ITM); and the power recycling cavity length (PRCL), which is the
average length between the power recycling mirror (PRM) and the ITMs.

The four main ports used to pick off signals and control the degrees of freedom (DOFs) of the
interferometer are the reflection port (REFL), the pick-off port in the power recycling cavity
(POP), and the anti-symmetric port (AS). The REFL port is located at the input side of the
power recycling mirror (PRM), capturing light that is reflected from the interferometer before
it enters the power recycling cavity. The POP port is located within the power recycling
cavity, as a proxy for the circulating power in the cavity. Finally, the AS port is located
at the dark fringe of the Michelson interferometer, collecting light that exits asymmetrically
due to any imbalance in the arms.

Before the light enters the cavity, it is phase-modulated to enable the use of the Pound-
Drever-Hall (PDH) technique [3]. This modulation introduces sidebands to the beam, which
interact differently with the resonant cavities of the interferometer. The carrier frequency is
mixed with the sidebands to generate error signals, which are used to control the degrees of
freedom (DOFs) of the interferometer, such as the Michelson length (MICH) and the power
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recycling cavity length (PRCL). These error signals, called the PDH error signals, are also
observed in the detector.

Figure 1: A simplified illustration of the Dual-Recycled Michelson Interferometer (DRMI).
PRMI is the DRMI with ETMY, EMTX, and SRM are misaligned. Image courtesy of [4]

.

2.2 Lock Acquisition

The optics of the 40m interferometer, like those at the LIGO sites, are suspended on pen-
dulums. When not actively controlled, these optics shift due to seismic and thermal fluctu-
ations. This leads to the cavities moving out of resonance. In order to use the interformeter
as a precision instrument, one must lock the interferometer onto a resonance condition. This
process is known as lock acquisition.

Lock acquisition involves multiple steps. In this report, we focus on length sensing and
control of PRMI. The PRMI setup is particularly useful for fine-tuning the alignment of the
Power Recycling Mirror (PRM) optic in preparation for locking more complex configurations.
We can achieve locking so that either the carrier or sideband field is resonant within the
Power Recycling Cavity (PRC). For our work with reinforcement learning, we emphasize
maximizing POP, which acts as a proxy for intracavity buildup. Thus, we are locking onto
the carrier field.

2.3 Proximal Policy Optimization

The reinforcement learning algorithm we use is Proximal Policy Optimization (PPO). This
algorithm is an on-policy method, meaning it directly optimizes the current policy employed
by the reinforcement learning (RL) agent. The agent operates according to its policy, explores
the environment, and seeks to improve its policy based on the rewards gathered from its
actions. On-policy algorithms tend to be more stable and reliable because they frequently
sample more optimal actions, allowing for faster convergence.
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In our lock acquisition problem, the stability and reliability of PPO are particularly valuable.
The faster convergence enables us to prototype and refine our ideas more efficiently. In
contrast, off-policy algorithms do not optimize the current policy directly. Instead, they allow
the agent to learn from data generated by other policies, significantly enhancing sampling
efficiency. This is especially beneficial for our lock acquisition problem, where using Finesse
3 can be computationally intensive. By improving sampling efficiency, we can reduce the
frequency of calls to Finesse 3. However, off-policy methods often converge more slowly and
can introduce instability, leading to high variance, divergence, and other undesirable effects.
Therefore, our efforts have mostly focused on on-policy algorithms.

The main outline of PPO is as follows [5]:

• Interact with the environment to gather experience. Recording state, action, reward,
next state, and probability of action under current policy.

• Calculate the advantage, A, which measures how much better a specific action is com-
pared to the average action taken in a given state. Formally, it is defined as:

A(s, a) = Q(s, a)− V (s) (1)

where A represents the advantage, Q is the expected cumulative reward for taking
action a in state s, and V denotes the expected cumulative reward for being in state s,
independent of the action taken. The advantage function thus indicates how much more
effective action a is in state s compared to the average action. In PPO, we estimate Q
using our rewards gathered, while a critic neural network is used to estimate V .

• Update the policy. The defining feature of PPO is the assumption that updates to the
policy should not stray too far from the previous policy, which increases stability. There
are two primary ways to make sure updates are small: penalty and clipping. In our
implementation, we utilize clipping. Therefore, we aim to maximize A, while clipping
to keep our changes within a specific range. Consequently, our objective function1 is
expressed as:

LCLIP(θ) = E

[
min

(
r(θ)A(s, a),

{
(1− ϵ)A(s, a) if A ≥ 0

(1 + ϵ)A(s, a) if A < 0

)]
(2)

where θ parameterizes the policy πθ, ϵ is a hyperparameter, and r(θ) is defined as:

r(θ) =
πθnew(a | s)
πθold(a | s)

(3)

is the probability ratio. It is calculated between the current policy being updated,
and the policy used to collect the trajectories. It estimates the divergence between the
policies.

To understand Equation 2, we can consider the two cases, if Advantage is positive or
negative.

1Notation for the objective function may vary; in our report, we use L to represent the objective function,
while other texts may use different symbols.
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If A ≥ 0:
L = E (min [r(θ), (1 + ϵ)]A) . (4)

Because advantage is positive, the objective function increases if the action becomes
more likely. Meaning, L increases if πθ(a|s) increases. However, this is clipped by the
min function. Once πθ(a|s) > (1 + ϵ)πθ(a|s), it gets clipped, so that it doesn’t go too
far from the old policy.

Similarly, if A < 0 :
L = E (max [r(θ), (1− ϵ)]A) (5)

Because advantage is negative, the objective function will increase if the probability of
the action becomes less likely. The max function in this case puts a limit to how much
the objective function can increase. Once πθ(a|s) < (1 + ϵ)πθ(a|s), it gets clipped and
we hit a ceiling. Again, this means the new policy does not benefit by going too far
away from the old policy.

Overall, we update the policy by maximizing this objective function. This is usually
done with some gradient ascent.

• Finally, PPO updates the value function, V , estimator. In our case, our value function
is estimated by a critic neural network. We do gradient descent to improve on it.

Proximal Policy Optimization (PPO) generally operates under the (weak) assumption of a
Markovian decision process. However, this assumption does not hold in our specific problem.
In this report, I will present two cases: the static case, where a Markov decision process is
applicable, and the non-static case, where this assumption fails. It has been shown that
even in simple problems, such as the single inverted pendulum, masking the velocity can
lead PPO to not converge. This is because the system does not conform to the Markov
decision process framework. Therefore, since our interferometer is not a Markov decision
process, we need ways to derive velocity from the system, to make it one.

2.4 Convolutional Neural Networks

In our problem, we only observe power detector outputs, so we need a method to derive
velocity from these instantaneous observations. To achieve this, we use a convolutional
neural network (CNN) combined with frame stacking to extract velocity-related features
from the environment. As we collect observations (such as power detector and PDH error
signals), we stack these observations over time. This stacked sequence is then passed to a
feature extractor, which is implemented using a CNN.

The feature extractor analyzes the stacked observations, creating a vector that incorporates
information from neighboring time steps. This allows the reinforcement learning agent to
infer velocity from a sequence of data points and incorporate it into its decision-making
process. The feature extractor proceeds as follows:

• Frame Stacking: We first stack multiple sequential observations of the system, such
as power detector (PD) outputs and PDH error signals, each instance observed is called
a frame.
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• 1D Convolution: The feature extractor applies a 1D convolutional layer to convolve
neighboring datapoints in the time series.

• Activation Function: To introduce non-linearities into the network, the convolution
output passes through an activation function. In our case, we use the ReLU function.

• Pooling: After applying the activation function, we pool to downsample the number
of features.

• Flattening: The pooled output is then flattened into a 1D vector, which serves as our
final output vector.

• Feeding to RL Agent: Finally, we feed both the original observations (PD and PDH
signals) and the extracted features ft to the reinforcement learning agent as inputs.

Figure 2: Depiction of a 1D convolution neural network architecture with two convolution
layers. In our case, each x1, x2..xn is a vector of observations. The total number of x vectors,
n, is the size of our frame stack. Image courtesy of [6]

.

2.5 FINESSE

FINESSE (Frequency domain INterferomEter Simulation SoftwarE) is a tool for simulating
the optical behavior of laser interferometers. It numerically computes light field amplitudes
within an optical system by using Hermite-Gaussian modes in the frequency domain. We
use FINESSE to simulate the power detector outputs and PDH error signals.

In our work, we utilize the FINESSE 40m package [7], which is configured specifically for
the 40-meter interferometer. This package is the standard FINESSE software configured
with the parameters specific to the 40-meter interferometer. It provides the response of the
interferometer to changes in its degrees of freedom, forming the basis for our environment.
However, FINESSE is static by nature and does not emulate how the degrees of freedom
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evolve over time. Therefore, while the package serves as a basis, we must develop additional
code to model the changes in the degrees of freedom.

3 Approach

3.1 Time-Domain Simulation and FINESSE Integration

FINESSE provides the Power Detector (PD) and Pound-Drever-Hall (PDH) signals based on
specific interferometer parameters, but it doesn’t model how the interferometer dynamically
responds to noise or external forces. To accurately simulate the interferometer’s behavior,
we need to account for how these noise forces affect the system over time. Additionally,
we must model the impulse response to understand how the interferometer’s degrees of
freedom—MICH and PRCL—change under external forces.

To address these challenges, I developed a time-domain simulation of the Power-Recycled
Michelson Interferometer (PRMI). The key steps involved were as follows:

• Interferometer Modeling: I modeled the interferometer’s key optics, placing them
on single pendulums. These optics were evolved over time using Runge-Kutta 4, which
accounts for the forces acting on them. Each optic has a resonant frequency of 1 Hz. As
the optics swing, the simulation computes the relative distances between them, which
directly impact the interferometer’s degrees of freedom, MICH and PRCL. Notably,
only the Power Recycling Mirror and the Beamsplitter are simulated, as all other optics
are kept stationary for simplicity.

• Noise Forces: To emulate the noise forces acting on the PRM and BS, I first locked
the interferometer and then analyzed the control signals sent to maintain this locked
state. These control signals, responsible for counteracting environmental noise, serve
as proxies for the noise forces in the system. The signals obtained were in units of
floating-point counts, which required calibration to actual forces. Additionally, these
calibrated forces had to be converted from forces acting on the interferometer’s degrees
of freedom (MICH and PRCL) to forces acting on the individual optics (PRM and BS).
The simulation also adds random phases to the inverse fourier transform of the power
spectrum to generate unique noise series each run.

• Maximum Force Calibration: We also calibrated the maximum applicable force to
correspond to the maximum force that can be exerted on the real optics.

• FINESSE Integration: At each point in the simulation, noise forces and applied
forces cause the optics’ positions to shift, which, in turn, affects the interferometer’s
degrees of freedom. These changes were fed back into FINESSE to update the PD and
PDH signals accordingly. At each step, FINESSE computed the new optical signals
based on the updated interferometer parameters.

Once we established the pendulum model, incorporated noise forces, and calibrated the max-
imum forces applicable to the mirrors, we created a basic simulation of the interferometer.
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Figure 3: A flowchart depicting the logic of the time-domain simulation [8].

However, this model has its limitations. Specifically, it only simulates the free-swinging mo-
tion of well-aligned optics. In reality, we will get offsets and our beam becomes misaligned
with the optics, but these are not included in the model. Therefore, this simulation is only
valid for the well-aligned, uncontrolled, free-swinging state.

Beyond this, we needed to improve the simulation speed. Each time we adjust the interfer-
ometer, FINESSE performs a full beam trace, which involves matrix inversion and can be
quite slow. Since our simulation doesn’t introduce macroscopic changes at any step, per-
forming a full beam trace every time is unnecessary. By introducing optimizations, I was
able to achieve a two-order-of-magnitude speedup in the simulation. To achieve this, I
did the following:

• Custom FINESSE Action: FINESSE actions are performed before or after scanning
a variable. We create a custom FINESSE action to change our variables of interest
directly, while scanning a dummy variable. By doing so, we bypass the time-consuming
beam tracing and pre-checkups that are normally required. Whereas the run() method
needs to perform a full beam trace each time.

• Overwriting the requests() Method: To update degrees of freedom such as PRCL
and MICH, we had to modify the action’s internal requests() method. Normally,
FINESSE actions don’t allow for direct changes to these degrees of freedom, so this
rewrite was necessary.

• Overwriting the do() Method: Similarly, we needed to modify the internal do()
method to ensure that PRCL and MICH could change during the simulation, even
within a custom FINESSE action.
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Figure 4: The simulated flashing of our PDs closely resemble real-world data measured at
the 40m.

• Dummy Variable for Iteration: FINESSE actions are typically called while scan-
ning a variable. We introduced a dummy variable to scan over, triggering our custom
action at each post-step.

By applying these optimizations, we successfully created a time-domain simulation of the
PRMI that operates at approximately 1/16th of real-time. That is, it takes 16 seconds to
generate one second of real-life data.

3.2 Static Simulation

We first worked with a static simulation of the PRMI as a toy model. In this scenario,
there are no mechanical pendulums involved; the agent interacts directly with FINESSE
as a frequency-domain simulation. Additionally, noise forces are absent, and the agent can
instantaneously adjust the interferometer’s degrees of freedom without needing to account
for any applied forces.

This static model serves as a proof of concept, demonstrating that it is indeed possible for
an agent to use the PDH and PD signals to guide the interferometer into a locked state.

4 Results

4.1 Static Locking

The agent is capable of bringing the static PRMI into lock, albeit not consistently, but
with enough frequency to demonstrate proof of concept. In this case, we utilize multi-agent
reinforcement learning, where each agent is responsible for controlling a specific degree of
freedom. The agents are rewarded based on if they can maintain the interferometer within
a few nanometers of the resonance condition.
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Figure 5: One episode where the agent is able to bring the static interferometer to lock.

Since this scenario involves no velocities or dynamic parameters, it can be modeled as a
Markov Decision Process, where each agent only requires the current observation to make
decisions. Consequently, we do not implement a CNN-based feature extractor in this in-
stance.

Furthermore, we exploit the static nature of the problem by training each agent indepen-
dently. During testing, the agents can be called consecutively, allowing them to work together
to achieve the locking condition.

4.2 Linear Controllers

The time-domain simulation has also proven useful for testing linear controllers. In one
demonstration, I implemented a PID controller to achieve lock. The controller is activated
when the POP signal flashes above approximately 30% of its maximum value, indicating
that the system is entering the linear region of the error signal. Once inside this region, the
controller works to acquire lock as the pendulum swings through.

In these tests, I allowed the PRM to swing freely while keeping the BS and ITMs stationary.
The controller successfully stabilized the PRCL cavity starting from a random initial position.

This simulation allows the opportunity to optimize the gains of our linear controllers—something
that was previously unachievable. Now, we can rigorously test and fine-tune the controller
gains for improved performance.

4.3 Reinforcement Learning for Lock Acquisition

Presently, reinforcement learning for lock acquisition of the time-dependent case remains
a work in progress. The agent has not yet successfully locked the interferometer, as it
struggles to converge and fails to learn from the environment. To address this, we plan to
further explore reward shaping and curriculum learning. However, as of now, the agent has
yet to lock.
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Figure 6: Power at POP With PID Controller. This demonstrates lock acquisition of the
PRCL activity with all other optics held still.

5 Discussion

Over the course of the summer, we have developed a time-domain simulation of the PRMI,
demonstrated locking of the static interferometer, and began investigations in locking the
time-domain simulation. This simulation also opens up new opportunities for optimizing
linear controller gains, allowing us to fine-tune our current control systems.

Despite this progress, we have yet to lock the interferometer using reinforcement learning.
Key difficulties include expensive sampling, large state-action space, complicated dynamics,
non-markovian processes, and sparse rewards. These combined have made it difficult for the
agent to converge.

Looking ahead, we are experimenting with reward shaping, curriculum learning, and other
RL algorithms in trying to overcome these challenges. Concurrently, we are attempting to
improve our current linear controllers using the time-domain simulation.

6 Other Efforts

During the summer, I also worked on continuously monitoring the Unity Gain Frequency
(UGF) of various control loops at the 40-meter interferometer. My efforts involved program-
ming a Moku:GO to send band-limited Gaussian noise through one channel while simulta-
neously collecting the same noise after it passed through the control loop. I then analyzed
the power spectral densities to identify the frequencies at which unity gain occurs. This
approach enables continuous monitoring of control loops at the 40m without the need for
sweeping sine waves, which could inadvertently excite a resonance condition and disrupt the
interferometer’s lock.
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