LIGO DAC Design Results and Prospects

Daniel Sigg and Marc Pirello

LIGO Hanford Observatory

CDS Meeting October 16, 2024

Reminder Goals

□ Technology:

- New ADC/DAC chips typically support faster rates not necessarily more bits
 - ❖ iLIGO: ~20kHz, aLIGO: ~200kHz, now: ~1MHz.
- Lower noise achieved by faster acquisition
- > Avoid higher data rates for IO chassis by implementing FPGA decimation filters

□ Clocking Improvements:

- ➤ No rogues clocks: synchronized switchers, FPGA clock is 2²⁶Hz
- > Use timing distribution signal as input clock: Converter knows GPS time
- > No special startup synchronization procedure required, always synchronized
- > Allows for time stamped data transfers
 - Watchdog: Outputs can be stopped when no valid data is received

Others:

- ➤ Replace failing 18-bit DAC (GS 20-bit DAC very expensive, i.e., ~\$7500 for 8 channels)
- Running out of space in some IO chassis

Status

- □ DAC Prototype done
 - \triangleright Uses $\Sigma\Delta$ -Technology, on chip FIR filters replaced by FPGA IIR filters
 - > Runs at 1MHz data rate, but max useful rate is 128kHz
 - Runs at 64kHz in RTCDS: Up-sampling to 1MHz and 30KHz low pass filters in FPGA
 - > FPGA firmware debugged, DMA and filters working
 - > RTCDS drivers fully functional
- □ In-Situ DAC Testing
 - ➤ 1 DAC board installed at EX driving ETMX ESD, L1, L2
 - > Reliability: Installed on 7/25/24, running with connected outputs since 9/17/24
 - ➤ No visible effect on sensitivity or operations
- □ Test stand results
 - Superior to 20bit DAC in all tests performed
 - > See next pages for details
- □ Report <u>T2400066</u>, compare to <u>G1500761</u> (20-bit) and <u>G1401399</u> (18-bit)

Proposal

- Build 20 new 32-chn DACs to replace old 8-chn 18-bit DACs at LHO
 - > Cost: ~\$2500/DAC when ordering 20 or more (includes new adapter/interface boards for AI)
- □ Still use 33 18-bit DACs in H1
 - ➤ Don't have enough 20-bit DACs, would have to buy ~20 more to complete the transition
 - ➤ Would cost ~\$150k
- Will have extra channels to cover any A+ short fall
 - > A+ is using 16-bit DACs in some places to save costs, wouldn't be needed
- Will have extra channels to cover JAC/POPX upgrades
 - sus2a and sus2b IO chassis can be combined into sus12

Results from Test Stand

- □ Top: New DAC in empty IO chassis
- □ Bottom: Multiple old 16-bitADC cards added
- Beat notes of oscillators on ADC boards

20-bit DAC

- □ Fair amount of excess noise with high bias voltage
- Channel 6probably broken

Four Simple Poles/Zeroes at 1 Hz/10 Hz

Significantly better than 20-bit DACG1500761

Four Simple Poles/Zeroes at 5 Hz/50 Hz

- □ Low frequency similar to 20-bit DAC
- Not totally clear if we are seeingADC noise

cheby1("LowPass",8,1,3)

Summary

- New DAC has superior performance in most tests
- No rogue oscillators
- □ Costs 15x less per channel than 20-bit DAC
- □ Has performed well in ETMX test

□ Recommend going forward with 1st purchase of 20 boards for H1

