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As gravitational-wave observations expand in scope and detection rate, the data analysis infras-
tructure must be modernized to accommodate rising computational demands and ensure sustain-
ability. We present a scalable gravitational wave search pipeline which modernizes the GstLAL
pipeline by adapting the core filtering engine to the PyTorch framework, enabling flexible execution
on both Central Processing Units (CPUs) and Graphics Processing Units (GPUs). Offline search
results on the same 8.8 day stretch of public gravitational wave data indicate that the GstLAL
and the PyTorch adaptation demonstrate comparable search performance, even with float16 preci-
sion. Lastly, computational benchmarking results show that the GPU float16 configuration of the
PyTorch adaptation executed on an A100 GPU can achieve a speedup factor of up to 169 times
compared to GstLAL’s performance on a single CPU core.

I. INTRODUCTION

Since the first detection of gravitational waves from a
binary black hole merger, GW150914 [1], the LIGO [2],
Virgo [3] and KAGRA [4][5] collaborations have com-
pleted three observing runs, and reported over 90 can-
didates in the third Gravitational-Wave Transient Cata-
log (GWTC-3) [6]. These consistent detections not only
affirm gravitational-wave astronomy as an established
field but also lead to groundbreaking discoveries, such
as the first binary neutron star merger, GW170817 [7].
With upcoming ground-based and space-based detectors
in multiple stages of development [8–10], we can expect a
rapid increase in both data volume and detection rates,
paving the way for new discoveries ahead.

As the scale of these observations expands, the com-
putational demands on detection pipelines will increase
drastically. GstLAL is a gravitational wave detection
pipeline capable of processing data in low-latency [11–13].
It has played a key role in the detection of GW150914
[1], was the first pipeline to detect GW170817 in low-
latency [7], and has been consistently making detections
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throughout all the observing runs [6, 14–16]. GstLAL
employs matched-filtering to search for compact binary
coalescences (CBC) [17], a technique that is implemented
in various forms in many search pipelines [18–20]. This
technique is effective for identifying signals in noisy strain
data, and requires filtering the data with a pre-generated
bank of templates, typically containing O(106) templates
[21], which makes exploring high-dimensional parameter
spaces computationally expensive.

Modern computational techniques, such as GPU ac-
celeration and machine learning, have been explored for
CBC searches [20, 22]. These approaches potentially pro-
vide scalability to handle increasing data size and allow
for more extensive exploration of parameter spaces, lead-
ing to improved scientific insights. In this work, we adapt
the core matched-filtering foundations of GstLAL to a
modernized framework, PyTorch [23], and demonstrate
that it can maintain detection efficiency while providing
the robustness needed to meet computational demands.

We chose the PyTorch framework for several reasons.
First, the PyTorch library supports GPU execution, of-
fering higher computational power and memory band-
width, which allows for scaling the filtering pipeline and
expanding both the template bank and search parame-
ter space. Second, PyTorch enables seamless switching
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between CPU and GPU, supporting efficient use of both
resources at computing centers while minimizing the need
to maintain multiple code versions. Third, GPU support
allows us to explore float16 precision, reducing compu-
tational costs and permitting further scaling of the tem-
plate bank. Fourth, using Python, a high-level language,
shortens development time, promoting faster progress
and a broader developer and user community. Finally,
PyTorch provides easy integration of machine learning
techniques for future enhancements.

This paper is organized as follows: Section II outlines
the workflow of the GstLAL pipeline and introduces its
adaptation to PyTorch. In Section III, we present search
results from public gravitational wave data using the Py-
Torch adaptation and compare them to the original Gst-
LAL results. Section IV evaluates and benchmarks the
computational performance of the PyTorch adaptation
against GstLAL. Finally, in Section V, we discuss our
conclusions and outline plans for future work.

II. PIPELINE DESCRIPTION

The GstLAL search pipeline can be divided into two
operational modes: “online”, which processes data in
low-latency, and “offline”, which processes archival grav-
itational wave data. In this paper, we will perform anal-
yses using the “offline” mode of the GstLAL workflow.
For a description of the “online” mode of the GstLAL
pipeline for O4, see [12]. For a description of both online
and offline search for O1 and O2, see [11].

A. GstLAL inspiral workflow

GstLAL uses time-domain matched-filtering to search
for gravitational wave candidates in detector strain data
[11, 17]. The process begins by correlating the data with
a bank of templates, identifying potential candidates, and
then assigning significance to each. The workflow can be
broken down into several stages.

In the setup stage, the template bank for the matched-
filtering process is generated. For the O4 run, the Gst-
LAL template bank contains approximately ∼ 2 × 106

CBC templates [21]. These templates are divided into
groups of ∼ 1000, and within each group, the Low-
Latency Online Inspiral Detection (LLOID) algorithm is
applied [17]. The templates are split into different time
slices, which then undergo singular value decomposition
(SVD) [24]. Each group of decomposed templates is re-
ferred to as an “SVD bank,” which is used in the next
filtering stage.

In the filtering stage, the strain data is processed by
first estimating the Power Spectral Density (PSD). The
running average of the PSD is used to whiten the strain
data, after which large deviations in the whitened data
are gated and removed, completing the data conditioning
process [11]. The conditioned data is then filtered using

LLOID algorithm

trigger generator

coincidence generator/
background collection

LLOID algorithm LLOID algorithm

H1 strain data L1 strain data V1 strain data

data conditioning
(whitening/gating)

data conditioning
(whitening/gating)

data conditioning
(whitening/gating)

FIG. 1: Flowchart of the inspiral program in the GstLAL
offline workflow. The shaded elements are the processes
adapted to the PyTorch framework, and can be executed ei-
ther on the CPU or GPU, offering flexibility and portability.
The workflow begins with strain data from multiple detectors
being read into the pipeline. The data is then conditioned
through whitening and gating. Afterward, the conditioned
data is processed using the LLOID algorithm, GstLAL’s im-
plementation of matched-filtering [17]. The LLOID algorithm
generates SNR time series, and SNR peaks with values ≥ 4 are
identified as triggers in the trigger generator. These triggers
are then sent to the coincidence generator to form coincident
triggers, while non-coincidence triggers during coincidence de-
tector times are gathered as background data.

the SVD bank from the setup stage, producing signal-to-
noise ratio (SNR) time series for each template. This
is achieved using the LLOID algorithm, which down-
samples the conditioned data, cross-correlates it with
orthogonal templates, performs matrix multiplication of
the orthogonal SNR time series with SVD coefficients,
and finally up-samples and sums the physical SNR seg-
ments [17]. Once the LLOID algorithm produces the
SNR time series, the inspiral program identifies peaks in
the SNR time series with SNR ≥ 4, which are defined as
“triggers.” The phase and the signal consistency metric
ξ2 are then calculated for these triggers. These triggers
are passed to the coincidence generator, which identi-
fies coincidences between triggers detected with the same
template and within the light travel time between detec-
tors. Non-coincident triggers that occur within the coin-
cident detector time are collected as background data.
In the injection stage, simulated CBC signals are gen-

erated based on a set of injection parameters, and these
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waveforms are added to the strain data at specific time
intervals. The combined data is then filtered using the
same algorithm applied in the filtering stage.

Finally, in the ranking stage, significance is assigned to
the triggers identified during filtering. Triggers are ini-
tially ranked using a ranking statistic, which is then used
to determine their false alarm rate (FAR). GstLAL uses
the likelihood ratio as the ranking statistics, calculated
against the background data collected during the filter-
ing stage [13, 25]. Triggers from the injection stage are
also ranked against background data from the filtering
stage. The fraction of injections that pass a given FAR
threshold is then used evaluate the performance of the
pipeline.

B. PyTorch adaptation

The filtering stage of the GstLAL workflow, which fil-
ters whitened data with the template bank to produce
SNR time series, is the primary computational bottle-
neck. In GstLAL, the LLOID algorithm is implemented
as a set of Gstreamer [26] elements in C, and runs exclu-
sively on the CPU [27]. In this work, we re-implement
the LLOID algorithm using PyTorch.

The LLOID algorithm performs several linear algebra
operations including cross-correlation, matrix multiplica-
tion, resampling, and addition. In the PyTorch adapta-
tion, we replace these operations with PyTorch library
functions and integrate them into the workflow. Addi-
tionally, we introduced an optimization that enables fil-
tering across multiple SVD banks in parallel. Since SVD
time slices with the same sample rate share the same
input and output dimensions during filtering, these tem-
plates are grouped and stacked together during initializa-
tion. We then leverage PyTorch’s multi-batch and multi-
channel operations to execute the filtering computations
simultaneously across multiple SVD banks.

In addition to re-implementing the LLOID algorithm,
the trigger generation stage was also adapted for Py-
Torch. This change was necessary because the LLOID
algorithm generates SNR time series for each template
in the bank, and transferring such a large dataset from
the GPU to the CPU would create a substantial memory
bandwidth bottleneck. By adapting the trigger genera-
tion to PyTorch, we can reduce the data transfer by cre-
ating a more refined dataset that is sent from the GPU
to the CPU. The inspiral program in the GstLAL offline
workflow and the PyTorch adaptation are shown in Fig-
ure 1.

III. O3 DATA SEARCH RESULTS

In this section, we aim to demonstrate the validity of
the PyTorch adaptation by comparing its offline gravi-
tational wave search results with those of GstLAL. For
the PyTorch adaptation, we show search results under

three different configurations: (1) CPU with float32 pre-
cision, (2) GPU with float32 precision, and (3) GPU with
float16 precision. First, we outline the dataset and search
parameter space used for the analyses, followed by a com-
parison of the known gravitational wave events recovered
by each search configuration. Finally, we evaluate the
difference in injection recovery.

A. Dataset

We analyze an 8.8 day stretch of public HLV strain
data obtained from the Gravitational Wave Open Science
Center (GWOSC) [28]. The data cover the time range
of May 12, 2019 19:36:42 UTC to May 21, 2019 14:45:08
UTC, which is during the third observing run (O3).

B. Search parameter space

The template bank used in the analyses targets the
BBH region and covers a parameter space with compo-
nent masses between 3 and 200 M⊙, Mchirp between 6
and 200 M⊙, mass ratio between one and ten, and spin z-
components between -0.35 and 0.35. The frequency range
for the matched-filter integration is from 15 to 1024 Hz.
In total, there are 9,693 templates, which are grouped
into 10 SVD banks.

C. Gravitational wave events

There are six gravitational waves events previously re-
ported in GWTC-3 within the time span of the dataset
[6]. Table I lists search results for the six gravitational
wave events in the O3 dataset used for this study. Us-
ing the small BBH template bank, GstLAL and all three
different configurations of the PyTorch adaptation recov-
ered the six known gravitational wave events consistently.
The best match templates were the same among all

four analyses for each of the six events. The Py-
Torch adaptation recovers slightly lower network SNRs
than those of GstLAL for the events GW190513 205428,
GW190514 065416, GW190521, with a relative difference
of 0.2%, 0.2%, and 0.01%, respectively. This discrep-
ancy can be attributed to the additional feature of sub-
sample interpolation in the GstLAL pipeline during the
SNR peak finding stage, which is not implemented in the
PyTorch adaptation and is left for future development.
The network SNRs for the other three events are con-
sistent across all four analyses. The FAR values recov-
ered by the analyses are also consistent. The results for
GPU float16 show that performing matched-filtering in
half precision can produce consistent results with those
of float32 precision, and can be effectively used for detec-
tion in a gravitational wave search pipeline.
Figure 2 shows the inverse false-alarm rate (IFAR)

plots for the four different analyses for the duration of the
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search dataset. The dashed lines represent the expected
count distribution from background noise. The observed
distribution agree with the expected noise count at low
IFAR and clearly branch out at six number of events,
indicating the presence of the six known gravitational
wave events in the dataset. All the plots in Figure 2 for
all four of the analyses show consistent IFAR distribu-
tions. In particular, Figure 2d demonstrates that using
float16 precision in a gravitational wave search pipeline
is feasible.

D. Injection recovery

In addition to the strain data, we process an identi-
cal stretch of strain data with injection frames added to
evaluate the relative performance difference of the four
pipeline configurations. The injection set was generated
with source frame component masses between 10 to 100
M⊙, spin z-components between -0.3 to 0.3, and max-
imum redshift of 3. The injections are distributed uni-
formly in comoving volume. Injection frames were gener-
ated from the injection parameters and inserted into the
strain data every 48 seconds, resulting in a total of 15,615
injections through out the duration of the dataset.

We next focus on comparing the relative number of
found injections across the four analyses. An injection is
considered “found” if it has a FAR value below a FAR
threshold of one per thirty days. Table II lists the number
of injections found for each of the analyses, categorized by
the observing instrument times. The results demonstrate
that the injection recovery of the PyTorch adaptation
aligns closely with that of GstLAL. Both the CPU float32
version and GPU float32 version have a total number of
found injections with a relative difference of less than 1%
compared to GstLAL. The GPU float16 configuration,
with a total number of detected events 1.13% lower than
GstLAL, shows slightly reduced performance but remains
comparable.

IV. COMPUTATIONAL PERFORMANCE

In this section, we seek to evaluate the computational
performance for the different configurations of the Py-
Torch adaptation, using the GstLAL analyses as a base-
line. The part of the pipeline that is benchmarked is
the inspiral job, which begins with the ingestion of strain
data, and ends with the generation of triggers. We per-
form a three detector search, with the strain data being
three stretches of gaussian data colored with the PSDs
of each of the HLV instruments. The SVD bank used
has 1,004 templates, with template duration of 73 sec-
onds. There is one SVD bank for each instrument, since
the SVD templates need to be whitened by the PSDs of
the instruments. When we process multiple banks in the
following tests, we provide the same SVD bank multiple
times.

The CPU benchmarking tests are conducted on a com-
puting node equipped with AMD EPYC 7313 Processors,
with 32 physical CPU cores in total. We launched 64 in-
spiral jobs on the computing node in parallel. Each job
processes one hour of continuous HLV gaussian data, and
one SVD bank for each instrument. We assess computa-
tional performance by using “templates in real-time” as
a metric, which is defined as

number of templates× data duration (s)

number of cores× wall time (s)
(1)

and serves as a measure of how many templates the
pipeline can process in real-time on a single CPU core.
The GPU benchmarking tests are performed on two

kinds of GPUs, NVIDIA A2 16GB and NVIDIA A100-
SXM4-80GB. As explained in Section II B, the PyTorch
adaptation will stack multiple SVD banks during the fil-
tering stage and process the multiple SVD banks in par-
allel. Therefore, for benchmarking the GPU configura-
tions, we run one inspiral job and vary the number of
SVD banks the pipeline processes to evaluate the perfor-
mance as a function of the number of SVD banks. We
use the same SVD bank used for the CPU benchmarking
tests. For the GPU “templates in real-time” metric, we
consider the GPU as one processing unit, and set “num-
ber of cores” as one in Equation 1.
Figure 3 presents the performance of GstLAL and the

different configurations of the PyTorch adaptation. The
CPU version of PyTorch is slower than that of GstLAL,
and its optimization is intended for future work. The
performance of the GPU configurations improves as the
number of SVD banks processed within one job increases.
The performance grows linearly for small number of SVD
banks, and slowly plateaus at larger number of SVD
banks, when the GPU’s resources are saturated. Fig-
ure 4 shows the speedup factor of the PyTorch adapta-
tion compared to GstLAL on a single CPU core. The
GPU analyses clearly outperform GstLAL’s single CPU
core performance, with the highest speedup factor being
169.14x.

V. CONCLUSION

In this paper, we present a scalable matched-filter
based gravitational wave detection pipeline, where the
core filtering engine and trigger generator of the GstLAL
pipeline have been replaced with PyTorch modules. The
flexibility to switch between computation devices allows
us to offload computational bottlenecks to GPUs for en-
hanced performance. Additionally, we introduced a fea-
ture in the filtering algorithm that leverages PyTorch’s
multi-batch and multi-channel options to filter multiple
SVD banks in parallel.
To validate the detection performance of the PyTorch

adaptation, we filtered GstLAL and three PyTorch con-
figurations: CPU float32, GPU float32, and GPU float16,
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TABLE I: Search results of the gravitational wave events previously reported in GWTC-3 within the dataset for GstLAL and
three configurations of the PyTorch adaptation. The instruments listed in the “found inst.” column are those which identified
the event with a trigger of SNR ≥ 4.0. The SNRs in the table are network SNRs.

GstLAL PyTorch adaptation

CPU float32 GPU float32 GPU float16

Name Found Inst. SNR FAR SNR FAR SNR FAR SNR FAR

(yrs−1) (yrs−1) (yrs−1) (yrs−1)

GW190513 205428 H1L1V1 12.30 4.92 ×10−6 12.27 1.37 ×10−5 12.27 4.49 ×10−6 12.27 1.29 ×10−5

GW190514 065416 H1L1 8.404 3.83 8.403 3.32 8.403 2.62 8.402 3.24

GW190517 055101 H1L1 10.01 0.0011 10.01 0.00095 10.01 0.0010 10.01 0.0016

GW190519 153544 H1L1 13.26 7.41 ×10−7 13.26 6.80 ×10−7 13.26 7.40 ×10−7 13.26 8.18 ×10−7

GW190521 H1L1 14.57 0.0010 14.54 0.0010 14.54 0.0011 14.54 0.0026

GW190521 074359 H1L1 23.55 3.13 ×10−27 23.55 3.86 ×10−27 23.55 3.46 ×10−27 23.55 6.29 ×10−27

TABLE II: Number of found injections for each of the four
analyses, categorized by different combinations of observing
instruments. The “Sum” row adds up all the injection num-
bers from all the different combinations.

GstLAL PyTorch adaptation

CPU GPU GPU

On Inst. float32 float32 float16

H1L1V1 1996 2017 1990 1982

H1L1 989 989 978 966

H1V1 99 99 99 98

L1V1 330 333 332 327

H1 11 11 11 10

L1 77 78 78 79

V1 19 19 19 19

Sum 3521 3546 3507 3481

using an 8.8-day stretch of O3 public data. All four con-
figurations successfully recovered the six known gravi-
tational wave events with consistent network SNR and
significance. Results from the injection campaign also
indicate that injection recoveries were comparable across
all analyses.

We benchmarked the PyTorch adaptation and com-
pared its computational performance with GstLAL. Our
results show that using the GPU float16 configuration on
an A100 GPU, the PyTorch adaptation achieved up to
169 times the speed of GstLAL running on a single CPU
core.

This study further demonstrates that float16 precision
can yield comparable results to float32 precision, mak-
ing it effective for detecting known gravitational wave
events while offering better computational performance.
This improvement in efficiency enables us to potentially
expand the search parameter space.

In the future, we plan to modernize the remaining por-
tions of the pipeline still using the Gstreamer framework.
With the increased performance from GPU configura-
tions, there is potential to further expand the search

parameter space. Additionally, leveraging the PyTorch
framework will allow us to integrate machine learning
techniques, explore alternative detection methods, and
enhance the pipeline’s overall sensitivity.
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FIG. 2: Number of events vs. inverse false-alarm rate for the four analyses. The dashed lines are the expected number of events
coming from background noise. The black lines are the number of events actually observed.
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Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, Pytorch: An impera-
tive style, high-performance deep learning library (2019),
arXiv:1912.01703 [cs.LG].

[24] K. Cannon, A. Chapman, C. Hanna, D. Keppel, A. C.
Searle, and A. J. Weinstein, Singular value decomposition
applied to compact binary coalescence gravitational-wave
signals, Phys. Rev. D 82, 044025 (2010).

[25] K. Cannon, C. Hanna, and J. Peoples, Likelihood-ratio
ranking statistic for compact binary coalescence can-
didates with rate estimation (2015), arXiv:1504.04632

[astro-ph.IM].
[26] Gstreamer, https://gstreamer.freedesktop.org/

documentation/index.html.
[27] K. Cannon, S. Caudill, C. Chan, B. Cousins, J. D.

Creighton, B. Ewing, H. Fong, P. Godwin, C. Hanna,
S. Hooper, R. Huxford, R. Magee, D. Meacher, C. Mes-
sick, S. Morisaki, D. Mukherjee, H. Ohta, A. Pace,
S. Privitera, I. de Ruiter, S. Sachdev, L. Singer, D. Singh,
R. Tapia, L. Tsukada, D. Tsuna, T. Tsutsui, K. Ueno,
A. Viets, L. Wade, and M. Wade, Gstlal: A software
framework for gravitational wave discovery, SoftwareX
14, 100680 (2021).

[28] R. Abbott et al. ((The LIGO Scientific Collaboration, the
Virgo Collaboration, and the KAGRA Collaboration)),
Open data from the third observing run of ligo, virgo,
kagra, and geo, The Astrophysical Journal Supplement
Series 267, 29 (2023).

[29] LSC Algorithm Library software packages lal, lal-
wrapper, and lalapps.

[30] LIGO Scientific Collaboration, LIGO Algorithm Library
- LALSuite, free software (GPL) (2018).

https://doi.org/10.1103/PhysRevD.109.044066
https://arxiv.org/abs/2403.18661
https://arxiv.org/abs/2403.18661
https://arxiv.org/abs/2403.18661
https://arxiv.org/abs/2403.18661
https://arxiv.org/abs/2403.18661
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.1103/PhysRevD.82.044025
https://arxiv.org/abs/1504.04632
https://arxiv.org/abs/1504.04632
https://arxiv.org/abs/1504.04632
https://arxiv.org/abs/1504.04632
https://arxiv.org/abs/1504.04632
https://gstreamer.freedesktop.org/documentation/index.html
https://gstreamer.freedesktop.org/documentation/index.html
https://doi.org/https://doi.org/10.1016/j.softx.2021.100680
https://doi.org/https://doi.org/10.1016/j.softx.2021.100680
https://doi.org/10.3847/1538-4365/acdc9f
https://doi.org/10.3847/1538-4365/acdc9f
http://www.lsc-group.phys.uwm.edu/lal
http://www.lsc-group.phys.uwm.edu/lal
https://doi.org/10.7935/GT1W-FZ16
https://doi.org/10.7935/GT1W-FZ16

	Scalable matched-filtering pipeline for gravitational-wave searches of compact binary mergers
	Abstract
	Introduction
	Pipeline description
	GstLAL inspiral workflow
	PyTorch adaptation

	O3 data search results
	Dataset
	Search parameter space
	Gravitational wave events
	Injection recovery

	Computational performance
	Conclusion
	Acknowledgments
	References


