Observing black holes and neutron stars with gravitational waves

Jonah Kanner LIGO Laboratory

Merging Black Holes

Animation created by SXS

Einstein's Gravity: General Relativity

Matter tells spacetime how to curve Spacetime tells matter how to move John Wheeler

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

Merging Neutron Stars

Animation by NASA Goddard 4

Why search for gravitational waves?

They are a completely new way to study the universe

Most of what we know about astronomy comes from photons or particles, neutrinos, or cosmic rays

Gravitational waves

- are produced by the most violent events in the universe
- travel unimpeded through matter
- carry direct information about the motion of bulk matter

LIGO 4 km interferometers Hanford, WA and Livingston, LA

How does LIGO detect gravitational waves?

LIGO/Caltech

How sensitive is the LIGO experiment?

LIGO Sensitivity Snapshots of LIGO (L1) Noise: S5 (2007), S6 (2010), O1 (2016), O2 (2017)

A Global Network

Observing Timeline

First Detection, GW150914

Caltech/MIT/LIGO Lab

A global network allows source localization

GraceDB — **Gravitational-Wave Candidate Event Database**

HOME	PUBLIC ALERTS	SEARCH	LATEST	DOCUME	NTATION		LOGIN	
LIGO/V Detection car	irgo O3 P undidates: 29	ublic Al	erts	ا multi-n	Rapid nesse	Alerts	for strono	my
SORT: EVENT ID ((A−Z) ▼						•••••	
Event ID	Possible Source (Probability)		ı	UTC	Locati	on	
<u> S190915ak</u>	BBH (99%)			S 2	Sept. 15, 201 23:57:02 UTC	L9	Alara de	
<u>S190910h</u>	BNS (61%), Terrest	rial (39%)		S	Sept. 10, 201 08:29:58 UT(19 C	La series Transference Construction Construc	

SPE

GW170817: gravitational waves from a binary neutron star merger

August 17, 2017

GW170817: Localization and optical counterpart

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20

Binary neutron star mergers form heavy elements

Merging Neutron StarsExploding Massive StarsBig BangDying Low Mass StarsExploding White DwarfsCosmic Ray Fission

19

Gravitational Wave Open Science Center

Discover Gravitational-Wave Observatory Data, Tutorials, and Software Tools.

Explore Data

Learn

gwosc.org

Data Documentation Tutorials Software Segment Lists Web Apps

Explore Strain: GW Quickview App https://gw-quickview.streamlit.app/

Select Data Time and Detector	
How do you want to find data?	
By event name	•
Select Event	
GW150914	•
Detector	
H1	•
Full sample rate data	
Set Plot Parameters	
Time Range (seconds)	
1.00	
0.10	3.00

Q-transform

About this app

$\bullet \bullet \bullet \bullet \Box \lor \cdot \cdot > \bullet$

Select Data Time and Detector

How do you want to find data?

By event name

Select Event

GW151012

Detector

H1

Full sample rate data

Set Plot Parameters

Time Range (seconds)

0.44

Gravitational Wave Quickview

C

- Use the menu at left to select data and set plot parameters
- Your plots will appear below

GW151012

X

-

•

-

GPS: 1128678900.4

Mass 1: 23.2 $\,M_\odot$

Mass 2: 13.6 $\,M_\odot$

Network SNR: 10

Event page: <u>https://gw-osc.org/eventapi/html/event/GW151012</u>

Loading data...done!

Event Catalogs

Event Portal

GW200129_065458

Documentation Release: GWTC-3-confident Event UID: GW200129_065458-v1 Names: GW200129_065458 GPS: 1264316116.4 UTC Time: 2020-01-29 06:54

GraceDB: S200129m

GCN: Notices · Circulars

Timeline: Query for segments

DOI: https://doi.org/10.7935/b024-1886

Data sourced from frame channels.

FrameChannels: [H1:DCS-CALIB_STRAIN_CLEAN_SUB60HZ_C01, L1:DCS-CALIB_STRAIN_CLEAN_SUB60HZ_C01, V1:Hrec_hoft_16384Hz]

Data sourced from frame types:

FrameTypes: [H] HOFT CLEAN SUB60HZ C01. L1 HOFT CLEAN SUB60HZ C01. VIOnline]

H1 strain

Download LIGO/Virgo data through:

Point and click Scriptable API CVMFS

	Universal Time (ISO8601)		GPS Time					
Start Time	2016-11-30T16:00:00	\leftrightarrow 11	64556817	ок				
End Time	2017-08-25T22:00:00	↔ 11	87733618	ок				
		Timeline	UTC		Mbytes	HDF5	Frame	Percent
		1164599296	2016-12-0	01T03:47:59	327 MB	HDF5	Frame	63
		1164603392	2016-12-0	01T04:56:15	515 MB	HDF5	Frame	100
		1164607488	2016-12-0	01T06:04:31	333 MB	HDF5	Frame	64
		1164611584	2016-12-0	01T07:12:47	336 MB	HDF5	Frame	65

Open Data Workshops

Duncan McLeod, Introduction to GWpy [Link to slides, tutorial] LIGO interferometer every day time, calibration , transient noise analysis

Ed Porter, Basics of compact binary searches [Link to slides, tutorial]

Learn GW data analysis Attend in person or online course Lecture videos + software tutorials

gwosc.org/workshops

Nearning Path	Signal Processing Tutorial · Streamlit	GW Quickview · Streamlit
×		Share 🟠 🖓 :
Select Data Time and Detector	Gravitational Wave Qu	ickview
By event name 🗸	 Use the menu at left to select data and set plot parameters Your plots will appear below 	
Select Event	• Tour prots will appear below	
GW170608 ~	GW170608	
Detector	GPS: 1180922494.5	
Н1 ~	Mass 1: 11.0 M _☉	
Full sample rate data	Mass 2: 7.6 M _☉	
Set Plot Parameters Time Range (seconds)	Network SNR: 15 Event page: <u>https://gwosc.org/eventapi/html/event/GW170608</u>	
1.22	Loading datadone!	
0.10 8.00	Raw data	
Whitened and band-passed data	×10 ⁻¹⁸	
✓ Whiten?		A Manage app

Summary

- Gravitational waves are providing insights across many fields, including:
 - Hubble constant
 - Neutron star equation of state
 - Heavy element production
 - Jet structure
 - Compact object populations
 - and more
- LIGO and Virgo are part of a global, rapidly developing network of GW observatories
- Get started at gwosc.org
- Many more discoveries to come!

Thank you!

Indirect evidence of gravitational waves

Hulse-Taylor Binary Pulsar PSR B1913+16

Observed black hole mergers to date

Black Holes of Known Mass

LIGO/VIRGO

Gravitational Waves Stretch Spacetime

Introductions

- Jonah Kanner
- Senior scientist with LIGO Laboratory, Caltech
 - Director of the Gravitational Wave Open Science Center
- I have 2 jobs:
 - I write software to look for gravitational waves
 - I help other people write software to look for gravitational waves
- contact: jonah@caltech.edu

Career path:

Bachelors in physics+math, then PhD in physics (UMD)

1.5 year "post-doc" at NASA Goddard

Gravitational wave propagation

Spacetime strain h(t) measured as $\frac{\Delta L}{L}$

Strains from astrophysical sources ~10⁻²¹ Measured over 4 km, ΔL ~ 10⁻¹⁸ m

Observing GWs with interferometry

Seismic Isolation

A three interferometer network and EM observer partners

Current Observing Run O3

- April 2019 May 2020
 - LIGO Hanford, LIGO Livingston, Virgo
 - KAGRA may join near end of run (!)
- **29 30** candidate detections so far (and counting)
 - gracedb.ligo.org
 - ~1 per week
- Includes possible BNS and first NS-BH
 - plus lots of binary black holes
- "O3a" first 6 months (ending soon)
 - Target to publish O3a catalog around April of 2020

GW Detector Timeline

https://arxiv.org/abs/1304.0670

Gravitational Wave Bursts

Discover & Characterize transients without templates

Work in time-frequency domain (mostly)

Use "coherence" between multiple detectors

Waveform Reconstructions

Glitch fitting for data cleaning

Compare data and models

Better modeling of data —> More sensitive detections

Searching for GW signals usually involves looking for "loudest" signal + cuts to remove glitches

- e.g. ranking statistic scales with SNR
 - Louder is better

Works well if the detector noise is Gaussian, but can fail when data contain artifacts (glitches)

Instead, can use Bayesian model selection to choose between competing models:

- Data are Gaussian noise
- Data are Gaussian noise + a glitch
- Data are Gaussian noise + a signal

.3

Data are Gaussian noise

Frequency [Hz]

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 Time [seconds] from 2015-09-14 09:50:47 UTC (1126259464.0)

- 2000 -energy - 1500 Normalised Data contain a glitch 45

Bayesian model selection for burst searches

Search that models data+glitches does better

Search for 'loudest' event gets fooled by glitches

Phys. Rev. D **93**, 022002

Bayesian model selection for matched filter searches

Noise Model

Signal

Model

Credit: NASA

Credit: NSF/LIGO/Sonoma State University/A. Simonnet

Updated 2018-12-01 LIGO-Virgo | Frank Elavsky | Northwestern

GWTC-1

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

LIGO-VIRGO DATA: HTTP5://DOI.ORG/10.7935/82H3-HH23

512 FREQUENCY [HZ] 128 32 GW170104 GW150914 GW151012 GW151226 512 REQUENCY [HZ] 128 32 GW170729 GW170814 GW170608 GW170809 0.1 0.4 0.1 0.2 0.4 0.2 0.3 0.3 512 FREQUENCY [HZ] 128 32 GW170823 GW170818 GW170817 : BINARY NEUTRON STAR 0.1 0.4 0.1 0.4 10 20 30 40 0.3 0.3 0.2 0.2 TIME [SECONDS] TIME [SECONDS] TIME [SECONDS]

WAVELET (UNMODELED)

EINSTEIN'S THEORY

IMAGE CREDIT: S. GHONGE, K. JANI | GEORGIA TECH

ELIGO MONVIRG Seorgia

Neutron Star Equation of State

B. P. Abbott *et al.* (LIGO Scientific Collaboration and Virgo Collaboration), The Astrophysical Journal Letters, 850:L39 (13pp), 2017 December 1

Measure the Hubble Constant

⁵²

Test General Relativity in strong gravity

1.0

Binary neutron star mergers form heavy elements

Merging Neutron StarsExploding Massive StarsBig BangDying Low Mass StarsExploding White DwarfsCosmic Ray Fission

54

Binary neutron star mergers form heavy elements

Yellow: Formed by Merging Neutron Stars