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ABSTRACT5

The complex astrophysical processes leading to the formation of binary black holes and their eventual6

merger are imprinted on the spins of the individual black holes. We revisit the astrophysical distribution7

of those spins based on gravitational waves from the third gravitational wave transient catalog (GWTC-8

3, Abbott et al. 2023a), looking for structure in the two-dimensional space defined by the dimensionless9

spin magnitudes of the heavier (χ1) and lighter (χ2) component black holes. We find support for two10

distinct subpopulations with greater than 95% credibility. The dominant population is made up of11

black holes with small spins, preferring χ1 ≈ 0.2 for the primary and χ2 ≈ 0 for the secondary; we12

report signs of an anticorrelation between χ1 and χ2, as well as as evidence against a subpopulation of13

binaries in which both components are nonspinning. The subdominant population consists of systems14

in which both black holes have relatively high spins and contains 20+18
−18% of the binaries. The binaries15

that are most likely to belong in this subpopulation are massive and slightly more likely to have spin-16

orientations aligned with the orbital angular momentum—potentially consistent with isolated binary17

formation channels capable of producing large spins, like chemically homogeneous evolution. This hint18

of a rapidly spinning subpopulation hinges on GW190517, a binary with large and well-measured spins.19

Our results, which are enabled by novel hierarchical inference methods, represent a first step towards20

more descriptive population models for black hole spins, and will be strengthened or refuted by the21

large number of gravitational wave detections expected in the next several years.22

1. INTRODUCTION23

Gravitational wave (GW) detections by the LIGO-24

Virgo-KAGRA (LVK) Collaboration (Aasi et al. 2015;25

Acernese et al. 2015; Akutsu et al. 2021) have opened26

a unique window onto compact objects like black holes27

(BHs) and neutron stars, as well as the massive stars28

that produce them. In particular, the vast majority of29

GW detections are of binary black holes (BBHs) (Ab-30

bott et al. 2019a, 2021a, 2024, 2023a; Nitz et al. 2019,31

2020, 2021, 2023; Zackay et al. 2019; Venumadhav et al.32

2019, 2020; Zackay et al. 2021; Olsen et al. 2022; Mehta33

et al. 2023), which are otherwise invisible.34

The distribution of spins of the individual BHs in these35

binaries may hold clues about their origin, e.g., whether36

they evolve from an isolated stellar binary or they are37

dynamically formed in dense environments (see, e.g., re-38

views by Mapelli 2020; Mandel & Farmer 2022). The39

dimensionless spin magnitudes, in particular, may re-40

veal how angular momentum is distributed in the stellar41

progenitors and captured by the BHs at birth, as well42

as carry imprints of binary interactions after the first43

BH forms (Belczynski et al. 2020; Qin et al. 2018; Fuller44

et al. 2019; Fuller & Ma 2019; Ma & Fuller 2019; Bavera45

et al. 2020; Bavera et al. 2021; Steinle & Kesden 2021;46

Zevin & Bavera 2022). Spin magnitudes may addition-47

ally identify hierarchical BBHs, whose component BHs48

are themselves the product of previous mergers (Gerosa49

& Berti 2017; Rodriguez et al. 2019; Kimball et al. 2020,50

2021; Doctor et al. 2020; Gerosa & Fishbach 2021; McK-51

ernan & Ford 2024; Payne et al. 2024).52

Past studies of LVK data have explored the distribu-53

tion of BH spins under different, more or less restrictive,54

assumptions. Since measuring individual component55

spins can be difficult (van der Sluys et al. 2008; Ray-56

mond et al. 2010; Cho et al. 2013; O’Shaughnessy et al.57

2014; Vitale et al. 2014; Ghosh et al. 2016; Chatziioan-58

nou et al. 2018; Pratten et al. 2020; Green et al. 2021;59

Biscoveanu et al. 2021b,a; Varma et al. 2022; Miller et al.60

2024a,b), many analyses have looked at derived quanti-61

ties like the effective spin χeff , which is a mass-weighted62

average of the spin components along the orbital angu-63

lar momentum (Damour 2001; Ajith et al. 2011), finding64

that this quantity must be small but likely positive in65

most systems (e.g., Abbott et al. 2021b, 2023b,b; Miller66
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et al. 2020; Callister et al. 2021b; Roulet et al. 2021;67

Adamcewicz & Thrane 2022; Biscoveanu et al. 2022;68

Franciolini & Pani 2022; Garćıa-Bellido et al. 2021).69

Other works have directly tackled the individual spin70

magnitudes χi of the heavier (i = 1) and lighter (i = 2)71

components of the binary, typically assuming that they72

are independently and identically drawn from a uni-73

modal distribution (Wysocki et al. 2018; Abbott et al.74

2019b, 2021b, 2023b); those measurements constrain75

spin magnitudes to be small, χi ≈ 0.2, but with wide76

uncertainties. Motivated by predictions like Fuller &77

Ma (2019), such models have been enhanced to look78

for a subpopulation of nonspinning BBHs: while ear-79

lier studies found evidence of two populations, one with80

negligibly small spins and the other with larger spins81

(Galaudage et al. 2021; Roulet et al. 2021; Hoy et al.82

2022; Kimball et al. 2021), reanalyses with more events83

show no clear evidence for or against it (Tong et al.84

2022; Callister et al. 2022). Finally, a few studies have85

modeled the spins of the primary and secondary objects86

as drawn from distinct, independent distributions (Tong87

et al. 2022; Mould et al. 2022; Adamcewicz et al. 2024;88

Golomb & Talbot 2023; Edelman et al. 2023); these mea-89

surements agree that the component spins have typical90

values ∼0.2 with a wide spread, and Mould et al. (2022)91

finds hints that the secondary could tend to have lower92

spins.93

In this paper, we take another look at the population94

of BH spin magnitudes, this time studying the struc-95

ture in the joint distribution of the component spins.96

Our main motivation is to look for features in the two-97

dimensional χ1−χ2 plane that may have escaped previ-98

ous analyses because of their assumption of independent99

components: information about χ1−χ2 correlations is100

destroyed, and evidence of subdominant populations101

may be washed away, when the spins are treated as inde-102

pendent. Additionally, we implement a novel technical103

framework that allows us to model arbitrarily narrow104

features in the population and treat boundary effects in105

the spin magnitude domain without bias. This allows us106

to revisit the existence of a subpopulation of nonspin-107

ning BHs while overcoming some of the technical hurdles108

that have challenged previous studies.109

In what follows, we describe our population model110

and dataset in Sec. 2, our population inferences in111

Sec. 3, and the astrophysical implications of our re-112

sults in Sec. 4. We discuss our conclusions and future113

prospects in Sec. 5. Additional details on our methods114

are given in Appendix A and further results are given in115

Appendix B. More details about methodology for BBH116

population inference, related methods, and additional117

applications are described in a companion paper Hus-118

sain et al. (2024).119

2. METHODS AND POPULATION MODELS120

We use hierarchical Bayesian inference to infer the121

population properties of BBHs (e.g., Loredo 2004; Man-122

del et al. 2019; Thrane & Talbot 2019; Vitale et al.123

2022). The goal is to compute posteriors over the hyper-124

parameters Λ of our chosen population model. In this125

study we adopt a flexible, two-population model for the126

BBH spin magnitudes, χ = (χ1, χ2), drawing them from127

a mixture of two correlated and truncated 2D Gaussians128

(indexed by a and b) with a mixing fraction η,129

p(χ) = ηN[0,1] (χ | µa,Σa)+(1−η)N[0,1]

(
χ | µb,Σb

)
,

(1)130

where the [0,1] subscript indicates truncation of our do-131

main to the [0, 1]× [0, 1] unit square, while both Σa and132

Σb independently have the general form133

Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
. (2)134

Since we have two identical Gaussians, we face a label-135

switching degeneracy (e.g. Buscicchio et al. 2019), which136

we break by assigning an identity to the dominant popu-137

lation (a), requiring η ∈ [0.5, 1]. We use truncated Gaus-138

sians rather than the Beta distributions used in Abbott139

et al. (2023b) to more easily generalize to two dimen-140

sions and to better represent the edges of our truncated141

domain without systematics. Aside from the use of trun-142

cated Gaussians, Eq. (1) encompasses a wide variety of143

spin magnitude models used in previous studies.144

For the remaining BBH parameters, we use the fidu-145

cial mass and redshift models defined in Abbott et al.146

(2023b), and the fiducial model for the tilt angles of147

the spins with respect to the orbital angular momen-148

tum, which assumes both spins are drawn from a two-149

population model: one uniform in tilt angle (isotropic150

spins) and one drawn from a half-normal peaking at151

aligned spins. Together with Eq. (1), this makes up152

our full population likelihood L({di} | Λ), where di rep-153

resents the data for the ith detection; with a population154

prior p(Λ) and an estimate of the detection efficiency155

ξ(Λ), we can then compute the population posterior156

p(Λ | {di}) while accounting for selection effects (Man-157

del et al. 2019; Loredo 2004).158

Population inference requires estimating high-159

dimensional integrals, which can be challenging for160

standard Monte Carlo methods (e.g., Farr 2019) when161

population features are narrow or concentrated at the162

edges of the domain. This is the case when looking163

for a subpopulation of BBHs with negligible spins164
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Figure 1. Left: PPD of the spin magnitudes in our two-component model. A hint of the subdominant component is visible
at at high χ1, χ2. This component contains 20+18

−18% of the BBHs and is diffuse, hence is not very apparent in the PPD despite
its statistical significance. The dominant, slowly spinning component shows hints of the anticorrelation between the primary
and secondary spin magnitudes. Right: Marginalized posterior over the fraction of BBHs in the dominant, slowly spinning
component. We also show the median and 90% HPDI. When all events are included the data prefers the existence of the highly
spinning component (η → 1 is disfavored). However, this subpopulation is disfavored when GW190517 is removed.

(χi → 0). To accurately compute these integrals,165

we first represent both single-event posteriors and166

detection-probability estimates as truncated Gaussian167

mixture models (TGMMs). This allows us to leverage168

properties of Gaussians to analytically evaluate integrals169

over the spin sector (magnitudes and tilts), while using170

Monte Carlo averages over the remaining parameters.171

Our methods help to control the variance in the esti-172

mates of our likelihood integrals across hyper-parameter173

space, and so we do not apply data-dependent priors174

to exclude regions of high variance (unlike, e.g., Abbott175

et al. 2023b). We discuss our strategy in detail in a176

companion paper (Hussain et al. 2024), and summarize177

it in App. A.178

We visualize the result of our fits by plotting the PPD179

for the spin magnitudes, which represents the inferred180

distribution of spins marginalized over all our population181

parameters, i.e.,182

p(χ | {di}) =
∫

p(χ | Λ) p(Λ | {di}) dΛ . (3)183

We also show projections of the population posterior184

for different hyper-parameters. Additionally, to perform185

model comparison of our fiducial spin-magnitude model186

against lower-dimensional subcases, we use the Savage187

Dickey density ratio (SDDR) for nested models (Dickey188

1971). To compute this, we use tailored methods to189

construct unbiased truncated kernel density estimates190

(KDEs) of our population posteriors to evaluate them at191

the limiting points (Hussain et al. 2024), and bootstrap192

over multiple hyper-posterior draws to report a median193

estimate and a 90%-confidence highest-density interval194

(see also Appendix A). Unbiased density estimation on195

boundaries is a well-known challenge in many settings,196

and our methods have benefits over standard solutions197

like reflective KDEs, for example not imposing a zero198

derivative at the boundary (see also Appendix A).199

For our dataset we use the 69 confidently detected200

(false alarm rates below 1/yr) events used by Abbott201

et al. (2023b) for BBH population inferences. We use202

posterior samples produced using the IMRPhenomX-203

PHM waveform model (Pratten et al. 2021) released a204

part of the GWTC-2.1 and GWTC-3 catalogs (Abbott205

et al. 2024, 2023a), and available as open data (Ab-206

bott et al. 2021c, 2023c) at LIGO Scientific, Virgo, and207

KAGRA Collaborations (2024). To incorporate selec-208

tion effects, we use the sensitivity estimates described209

in Abbott et al. (2023b) and provided by LIGO Sci-210

entific, Virgo and KAGRA Collaborations (2021). We211

sample our hyper-posteriors using the no-U-turn sam-212

pler (Hoffman & Gelman 2011) Hamiltonian Monte213

Carlo (Neal 2011; Betancourt 2017) implemented in214

numpyro (Phan et al. 2019; Bingham et al. 2019).215

3. RESULTS216
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We present our main result in Fig. 1, showing the PPD217

over χ1 and χ2 (left) and the posterior on the mixture218

fraction η (right). The PPD reveals a bimodal distri-219

bution of spins, with a dominant component peaking at220

χ1 ≈ 0.2 and χ2 ≈ 0 and a subdominant component221

peaking at χi ≈ 0.75. In Fig. 2, we isolate the con-222

tributions of each component, making it clear that the223

dominant mode consists of low spins BHs (top), while224

the subdominant mode mostly supports high spins (bot-225

tom). While the dominant mode is quite well measured,226

the subdominant mode is localized more diffusely, as227

might be expected given its lower occupancy. The sub-228

dominant component makes a relatively small contribu-229

tion to the PPD in Fig. 1, but this is a function of the230

smaller number of events that are assigned to this mode231

and not a measure of our certainty in its existence.232

To asses the significance of the second mode, the right233

panel of Fig. 1 shows our inferred posterior over the234

fraction of systems in the dominant subpopulation. The235

fraction of BBHs in the subdominant component is 1−236

η = 0.2+0.18
−0.18 quoting the HPDI around the median. In237

other words, ∼20% (∼80%) of the BBHs are favored238

to be in the rapidly (slowly) spinning subpopulation.239

The posterior on η rules out a single population of spin-240

magnitudes (η = 1) at better than 95% credibility. The241

Bayes factor (BF) in favor of the two-component model242

is B(2 vs 1) = 2.1+0.3
−0.3 (see Sec. 2 and Appendix A.2).243

The evidence for the subdominant mode is highly sen-244

sitive to the rapidly spinning event GW190517 (Ab-245

bott et al. 2021a). Removing it from our set, the data246

no longer support the a subpopulation, with 1 − η =247

0.15+0.22
−0.15 encompassing zero within 90% credibility, and248

instead yielding a BF against the existence of this249

subpopulation of B(1 vs 2) ≈ 1.4+0.1
−0.1. The source of250

GW190517 is decisive due to the fact that its spin mag-251

nitudes are confidently measured to be large (see, e.g.,252

Fig. 10 of Abbott et al. 2021a or Fig. 2 of Qin et al.253

2022), and cannot be accommodated by the dominant254

population alone. On the other hand, our results are255

insensitive to the exclusion of other GW events from256

highly spinning BBHs, such as GW191109 (Abbott et al.257

2023a). No data quality issues have been reported for258

GW190517.259

Although previous works have reported hints of260

a potential subpopulation of rapidly spinning BHs261

(Galaudage et al. 2021; Roulet et al. 2021; Hoy et al.262

2022), it would be difficult for such studies to clearly263

identify the secondary mode in Fig. 1 because such a264

subpopulation is not apparent in the χ1 or χ2 marginals265

(see Fig. 8 in Appendix B), as it is obfuscated by the266

tails of the low-spin mode. On the other hand, the sub-267

population stands out more clearly in 2D because those268

high-spin systems would otherwise have to be accommo-269

dated by the tail of the dominant component in both χ1270

and χ2 simultaneously, which is made difficult by the271

fact that the majority of events constrain the bulk of272

the posterior to be in a compact ball near the origin273

(in other words, the secondary mode lies well beyond274

the 90% credibility contour in 2D, but not in the 1D275

marginals).276

When comparing to studies that allow for a subpopu-277

lation with negligible spins, we must look at two cases,278

one where each of our Gaussian components separately279

concentrates at the origin. Using the SDDR, we find280

a BF against a dominant population with negligible281

spin of B = 7+71
−4 and a BF against a subdominant282

population with negligible spins B = 6+4
−3. As com-283

pared to our other SDDR-based BF comparisons, these284

are especially uncertain because we must extrapolate285

our hyper-posterior samples to a corner in 4D space286

(µa
1 = σa

1 = µa
2 = σa

2 = 0), but in both cases we clearly287

disfavor a subpopulation with negligible spins.288

We next describe the features of each subpopulation289

in more detail. Additional corner-plots of the hyper-290

posteriors are shown in Appendix B.291

3.1. The dominant population: slow and anticorrelated292

spins293

The dominant mode in the population has a number of294

interesting features: (1) both component spins are well295

constrained to be low, (2) there are differences between296

the primary and secondary spins, and (3) there is a hint297

of anticorrelation between the spins. We discuss each in298

turn.299

The fact that BHs in this subpopulation tend to spin300

slowly, regardless of whether they are the lighter or heav-301

ier component in the binary, is evident from the PPD302

in the top panel of Fig. 2; since this mode dominates303

the population, it can also be gleaned from Fig. 1. Ad-304

ditionally, the preference for low spins can be seen in305

the inferred population mean and scale parameters for306

this mode (Fig. 3), which strongly favor low values for307

both components in the binary. The uncertainties on χ2308

are not significantly worse than χ1. Since the dominant309

mode contains most BBHs, it has properties similar to310

those inferred in past spin population studies.311

Next, we find interesting differences between χ1 and312

χ2. While the spin of the primary BH peaks at χ1 ≈313

0.2, as expected from previous studies, the secondary314

BH population is consistent with identically vanishing315

spins. Not only does the PPD peak at χ2 ≈ 0 but316

also the population posterior favors a delta function at317

χ2 = 0 (the purple distribution peaks at µa
2 = σa

2 = 0318

in Fig. 3), with a BF of B = 15+2
−2 in favor of identically319
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Figure 2. Separate PPDs of the spin magnitudes of
the dominant and subdominant populations, shown with
and without the inclusion of GW190517. One can see
that the subdominant component prefers higher spins when
GW190517 is included. Without GW190517 the peak moves
to lower spin values and is degenerate with the dominant
component, indicating that the data disfavors a subpopu-
lation. Note that the color scale normalization varies from
panel to panel to resolve the variations in the PPD.

nonspinning secondaries. Conditioned on η → 1, (i.e.,320

only one population exists) we still find that the data321

favors all of the secondaries to be nonspinning with a322

BF of B = 10+6
−3.323

Previous studies have looked for differences in the χ1324

and χ2 distributions, assuming independence. For ex-325

ample, Adamcewicz et al. (2024) compared a model326

where both BHs are spinning to one where either the327

primary, secondary, or both are nonspinning by repeat-328

ing parameter estimation over the catalog of BBHs for329

each case; we corroborate their result favoring the case330

where only the primaries are spinning, without the need331

for additional, computationally expensive parameter es-332

timation. Hints of the support for lower secondary spins333

can also be gleaned from Fig. A1 in Mould et al. (2022);334

on the other hand, Edelman et al. (2023) found no vis-335

ible difference between χ1 and χ2 with a more flexible336

model.337

Unlike the secondaries, the primaries cannot all be338

nonspinning. This is clear from Fig. 3, where µa
1 and339

σa
1 are not allowed to simultaneously vanish (orange340

contours). The distribution of χ1 most likely peaks at341

0.0 0.2 0.4 0.6 0.8 1.0

µai
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σ
a i
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Figure 3. Dominant subpopulation. Posteriors for the
mean (µa

i ) and scale (σa
i ) population parameters of the pri-

mary BH (orange) and secondary BH (purple) in the dom-
inant subpopulation with 90%, 50% and 10% credible in-
tervals marked. The data prefers that for the secondaries
µa
2 → 0, σa

2 → 0 (i.e. all secondary BHs nonspinning). In
addition there is a degeneracy between µa

1 and σa
1 for the

primary’s spin. The data supports a sharp peak with all pri-
maries having χ1 ≈ 0.2, and is also consistent with χ1 drawn
from a half-normal peaking at χ1 = 0 with a spread of ≈ 0.2

µa
1 ≈ 0.2, as expected from Fig. 2, but may peak at zero342

as long as the spread is sufficiently large (σa
1 ≈ 0.2).343

This means that the data show evidence of at least one344

event with a primary spin of χ1 ≈ 0.2.345

Finally, returning to the top panels of Fig. 2, we see346

that the PPD suggests an anticorrelation between the347

spin magnitudes. While we do not rule out zero correla-348

tion (ρa = 0) at the 90% credible level, the BF against an349

uncorrelated distribution is B = 2.9+0.1
−0.1. Assessment of350

the correlation is complicated by the fact that a uniform351

prior on ρa induces a prior on the Pearson correlation352

coefficient ρ̂ = Corr[χ1, χ2] which is strongly peaked at353

zero. This is because for truncated Gaussians, a large354

range of means, scale parameters, and ρ values result355

in a small empirical correlation in the bounded χ1–χ2356

domain. This can be seen clearly in Fig. 4, where we357

show our posteriors and priors over ρ̂ for both subpopu-358

lations. We see that there are hints of an anticorrelation359

between the spins of the dominant population, as it is360

able to overcome this strong prior on ρ̂a. We also plot361

the case where we fix η = 1, so that we have only a sin-362
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Figure 4. Posterior over the pearson correlation coefficient
ρ̂ between the spin magnitude of the primary and secondary
black hole for BBHs in the different components.

gle spin-magnitude population. The peak is then similar363

to our fiducial model, favoring weak anticorrelation, but364

with a heavy tail towards positive ρ̂ values. This can be365

interpreted as the imprint of the highly spinning sub-366

population on our single-population model, since some367

posterior weight is pulled towards the large χ1–χ2 region368

while requiring the bulk of the spin population to lie at369

small spins.370

In any case, the correlation structure apparent in the371

PPD of Fig. 2 suggests a preference for pairing higher372

spinning primaries with lower spinning secondaries and373

vice versa, such that systems where both BHs are non-374

spinning (χ1 = χ2 = 0) are measurably disfavored.375

3.2. The subdominant population: relatively high spins376

The PPD of the subdominant population (bottom377

left of Fig. 2) peaks at large spins, and slightly disfa-378

vors cases where one of the two BHs is rapidly spinning379

while the other has negligible spin. However, the sub-380

population is broad, and the posteriors on the hyper-381

parameters are weakly informed by the data. Its empir-382

ical correlation ρ̂b is consistent with the prior, as seen383

in Fig. 4. Further, we see some contamination at small384

spin-magnitudes in the PPD from the remaining degen-385

eracy between the dominant and subdominant compo-386

nents, which occurs when η → 0.5. The bottom right387

plot in Fig. 2 shows that once we remove the highly388

spinning event GW190517, this subpopulation becomes389

degenerate with the dominant component in terms of its390

location but also captures the tail of the distribution of391

spin magnitudes towards higher values of χi.392

Additional clues about the origin of this subdominant393

mode can be found in possible correlations with other394
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Figure 5. Log BFs for all 69 events, comparing the hy-
potheses that each BBH comes from the rapidly spinning
subpopulation versus the dominant slowly spinning popula-
tion (abscissa) and that each comes from the predominantly
aligned-spin subpopulation versus the isotropic subpopula-
tion (ordinate). These BFs are marginalized over our hyper-
posterior samples in the manner discussed in Appendix A.3.
The trend implies that events more likely to lie in the rapidly
spinning subpopulation are more likely to come from the pre-
dominantly aligned subpopulation and tend to have higher
masses. Events with a median BF greater than 2 are marked
with black circles, and some events of special interest are la-
beled.

BBH parameters, for example the masses or spin tilts.395

In Fig. 5, we visualize the estimated log BF for each396

BBH we analyzed to lie in the rapidly spinning ver-397

sus the slowly spinning population (abscissa), as well as398

the log BF that to lie in the mostly-aligned-spin versus399

isotropic-spin tilt population (ordinate). Although the400

spin-tilt BFs are very weak, it seems that the rapidly-401

spinning BBHs tend to also fall in the aligned-spin pop-402

ulation, with the exception of GW191109 which is con-403

siderably anti-aligned (Udall et al. 2024); for BHs with404

smaller spins it is harder to determine the tilts, lead-405

ing to correspondingly larger scatter in the spin-tilt BF.406

In addition to tilts, Fig. 5 also encodes the binary pri-407

mary mass (maker size) revealing that those systems408

most likely to lie in the rapidly spinning population are409

also more massive, consistent with a correlation between410

mass and spin previously identified in, e.g., Tiwari &411

Fairhurst (2021); Hoy et al. (2022); Franciolini & Pani412

(2022); Callister et al. (2021b); Adamcewicz & Thrane413

(2022); Biscoveanu et al. (2022).414

4. ASTROPHYSICAL IMPLICATIONS415

The spin magnitudes of BBHs are determined by416

a number of factors, ranging from binary interactions417

which may tidally spin up the progenitor stars, the an-418
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gular momentum distribution and transport within the419

progenitor stellar cores during their evolution, the un-420

certain details of core collapse, and the effects of any421

fallback accretion (e.g., Mandel & Farmer 2022, and ref-422

erences therein). At face value, the bimodality that we423

infer in BBH spin magnitudes suggests that multiple424

formation channels may be at play (already supported425

by the inferred distribution of spin-tilt angles, Abbott426

et al. 2023b). This could be the case if LVK BBHs are427

a mixture of dynamically-formed systems and systems428

from isolated stellar binaries. Alternatively, isolated bi-429

naries alone could accommodate this bimodality if, e.g.,430

angular momentum is transported from the stellar core431

to the envelope leading to slowly spinning BHs (Fuller432

& Ma 2019), except when stars are tidally spun up (e.g.433

Kushnir et al. 2016; Fuller & Lu 2022; Ma & Fuller 2023)434

or are chemically homogeneous without a core-envelope435

structure (e.g. Mandel & de Mink 2016; de Mink & Man-436

del 2016; Marchant et al. 2016), resulting in one or both437

BHs with large spins (e.g., Qin et al. 2019, although438

see Riley et al. 2021).439

With this context, we first consider interpretations440

for the dominant population of slowly spinning BBHs,441

where we find the secondary BHs have negligible spin442

and the primaries have spins concentrated near χ1 ≈ 0.2,443

with hints of an anticorrelation between the component444

spin magnitudes, and strong support against both BHs445

being nonspinning. Given the wide range of angular446

momentum values that stellar cores can possess before447

collapse (e.g., Qin et al. 2019), it is challenging from448

first principles to produce natal BH spins that are not449

either very high or negligible, and doubly so to have two450

distinct cases for the primary and secondary. As seen451

in Fig. 3, another acceptable scenario is one where the452

secondary spin is negligible and the primary distribu-453

tion peaks at zero with a width σa
1 ≈ 0.25, allowing for454

a range of spin magnitudes for the primary. Both cases455

remain challenging to explain, since a standard binary456

evolution scenario might leave the first born, presumably457

more massive, BH with a small spin while the secondary458

can be spun up by tidal effects (Hotokezaka & Piran459

2017; Zaldarriaga et al. 2018; Qin et al. 2018). Alterna-460

tively, BH spins of χi ≈ 0.2 can be explained by moder-461

ately efficient angular momentum transport mechanisms462

that result in such natal spins (Belczynski et al. 2020), or463

through the accretion of a portion of the highly convec-464

tive envelope onto a BH with negligible natal spin (An-465

toni & Quataert 2021). However, it is not clear how to466

explain the distinction between primary and secondary467

spins in these scenarios.468

One resolution to the χ1 versus χ2 asymmetry would469

be for a mass-ratio reversal to occur prior to the for-470

mation of the first BH, followed by spin-up of the now471

more massive star through tidal interactions with the472

first BH (e.g., Gerosa et al. 2013; Olejak & Belczyn-473

ski 2021; Zevin & Bavera 2022; Broekgaarden et al.474

2022), yielding a spinning primary and a secondary with475

a lower spin. The models considered by Broekgaar-476

den et al. (2022) indicate that mass-ratio reversal can477

be common among detectable BBHs, but also predict478

some systems with spinning secondaries and a significant479

number of systems with negligible spins. However, the480

spin-tilt distribution provides evidence that a fraction of481

BBHs have isotropically distributed spins (Abbott et al.482

2023b). Since we find that the rapidly spinning subpop-483

ulation prefers more aligned spins, we expect that some484

of the low-spin systems arise from the isotropic spin dis-485

tribution, indicative that some BBHs form outside of486

the isolated binary evolution channel, or strong natal487

kicks (e.g., Callister et al. 2021a).488

The highly spinning subpopulation is intriguing. A489

key feature is that both primary and secondary spins490

tend to be large in this population, although with a wide491

range of uncertainties. We disfavor the case where the492

primary has a large spin χ1 ≈ 0.7 while the secondary493

has a small spin, disfavoring a population of mergers be-494

tween first and second-generation BHs in a dense stellar495

environment; since such mergers would be more common496

than mergers between two second-generation BHs (e.g.,497

Kimball et al. 2020), it is unlikely that these large BH498

spins are produced by previous BBH mergers. The cor-499

relation we find between probability of being highly-500

spinning and probability of having relatively aligned501

spins for the detected BBHs further hints that the large502

spins may arise from binary interactions. Together with503

the fact that the highly spinning population appears to504

be made up of more massive BHs, the homogeneous evo-505

lution of low-metallicity binaries would appear to be a506

reasonable scenario for this population.507

5. CONCLUSIONS508

In this work we have investigated the astrophysical509

distribution of BH spin magnitudes based on 69 BBHs510

detected with high significance in GW observations by511

the LVK. Unlike previous work, we have explored the512

two-dimensional space of component-spin magnitudes513

directly, using a model that subsumes those of many pre-514

vious studies and allows for two distinct populations in515

spin-magnitude space. We have confirmed that the bulk516

of BBHs have small but non-negligible spin magnitudes,517

with primaries favoring χ1 ≈ 0.2, while finding new ev-518

idence that secondary BHs are consistent with having519

identically zero spin. We have also found evidence for a520

weak anticorrelation between the spin components and a521
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we disfavor models in which the majority of BBHs have522

negligible spins. The latter result was enabled in this523

study by novel methods to make inferences about popu-524

lations with narrow features without recourse to tailored525

parameter estimation for the GW events.526

We have uncovered hints of a second, subdominant527

spin population containing 20+18
−18% of the BBHs, ruling528

out a single component with better than 95% credibil-529

ity. This second population, although broad, peaks at530

large spin magnitudes for both the primary and sec-531

ondary BHs. The evidence for this subpopulation is532

largely driven by a single GW event, GW190517, whose533

components have high and relatively well-measured spin534

magnitudes. We identify the probable GW events which535

arise from the rapidly spinning subpopulation, and find536

that these are preferentially massive. As in previous537

population studies, (e.g. Abbott et al. 2023b), we allow538

for two populations of spin orientations, one isotropic539

and one peaking towards alignment with the orbital an-540

gular momentum. We find that the BBHs identified541

with the rapidly spinning population are somewhat more542

likely to be in the aligned spin population, perhaps sug-543

gesting an origin in field binaries composed of massive,544

rapidly rotating stars. Note that spin measurements can545

be impacted by GW modeling systematics, and future546

work should assess the impact of such systematic errors547

on the properties and significance of the subdominant548

population found here.549

The analysis reported here is only the first allowing550

for multiple populations of BBHs with correlated spin-551

magnitudes. In order to better constrain the possible552

origin of the rapidly spinning BBHs, analyses including553

correlations between the spin magnitudes and spin orien-554

tations, binary masses, or redshift would be of great in-555

terest. Targeted analysis exploring the dominant, slowly556

spinning population would also be highly valuable, par-557

ticularly those that address the possibility that mass558

ratio reversal may play a role in forming binaries with559

small but non-negligible primary spin magnitudes and560

secondary spins consistent with zero.561

The evidence for the rapidly spinning subpopulation562

and its properties remains tentative. With only 69563

events in our dataset, our ability to infer fine details564

and isolate subpopulations is limited. At the time of565

writing, however, the LVK is in the midst of its fourth566

observing run, at even greater sensitivity than the previ-567

ous campaign. To date over 100 public alerts have been568

issued reporting GW event candidates with false alarm569

rates less than 2/yr, with many more BBH detections570

expected as GW detectors reach and exceed their design571

sensitivities in the coming years (Abbott et al. 2016).572

This growing dataset should confirm the rapidly spin-573

ning subpopulation if it exists, allow for more detailed574

inferences about the properties of BBHs in it, and, in so575

doing, help to uncover the origin and formation channels576

of merging BBHs.577
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Model / Sub-model Schematic Prior/Limits Comments/Bayes Factor

Two Components

η ∼ U(0.5, 1) Fraction of BBHs in the dominant component

µa,b
i ∼ U(0, 1) Mean parameters of each component

p(χ) = ηN[0,1] (χ |µa,Σa)+ σa,b
i ∼ U(0, 1) Scale parameters of each component

(1− η)N[0,1]

(
χ |µb,Σb

)
ρa,b ∼ U(−1, 1) Correlation parameter of each component

Two uncorrelated components ρ̂a,b = 0 B ≈ 2.5+0.2
−0.2 against this model.

Slow-spin subpopulation
(dominant component,
isotropic, peaked at zero)

µa
1 = µa

2 = 0,
σa
1 = σa

2 = σ0,
ρa,b = 0

B ≈ 29+12
−12 in favor of this model compared

to two uncorrelated components (above).
Similar to the BetaSpike-Galaudage analysis
of Callister et al. (2022), except there
σ0 ≤ 0.1 which is a disfavored regime, and
their bulk spins are identically distributed.

Zero spin subpopulation
µa
1 = µa

2 = 0,
σa
1 = σa

2 = 0

B ≈ 7+71
−4 against this model if dominant,

and B ≈ 6+4
−3 against this model if

subdominant (swap components a ↔ b),
compared to the full two component model.
Similar to the Tong et al. (2022)
NONIDENTICAL model and Mould et al. (2022)
NONIDENTICAL + ZEROS model, except here
the bulk has correlations.

One Component

µi ∼ U(0, 1) Mean parameter of the truncated normal

p(χ) = N[0,1] (χ |µ,Σ) σi ∼ U(0, 1) Scale parameters of the truncated normal

B ≈ 2.1+0.3
−0.3 against this

model compared to the two
component model.

ρ ∼ U(−1, 1) Correlation parameter of the truncated normal

Primary and secondary
uncorrelated

ρ̂ = 0 B ≈ 2.2+0.1
−0.1 against this model when

compared to the one component model.
Similar to the Mould et al. (2022)
Nonidentical model.

Primary and secondary are IID

ρ̂, µ1 = µ2 B ≈ 1.3+0.2
−0.3 in favor this model when

compared to the one component model.
This model is similar to the IID models often
used, for example by Abbott et al. (2023b) in
their fiducial model.

σ1 = σ2

All secondaries not spinning µ2 = σ2 = 0

B ≈ 10+6
−3 in favor of all secondaries

nonspinning over the two component model.
(B ≈ 13+3

−2 if compared to the one component
model)

Table 1. Summary of two-component and one-component models, their priors, and limiting cases. We include the BFs computed
using the SDDR for each sub-model, compared to either the full two-component model with correlations or the one-component
model (for the second section). Additionally, we note if some cases resemble those explored in the literature, modulo interchange
of a beta distribution with a truncated normal.

A. DETAILS ON METHODS AND POPULATION MODELS619

To allow us to probe the population properties of astrophysical BBHs, we start by using the fiducial mass, redshift620

and spin orientation models as defined in Abbott et al. (2023b). More specifically we use the PowerLawPlusPeak model621
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for the masses, PowerLaw model for redshift and we use only the part of the Default spin model that pertains to the622

spin orientation given by,623

p (zt | ζ, σt) = ζN[0,1] (zt | σtI2) + (1− ζ)
1

4
, (A1)624

where zt,i = cos θi and θi is the tilt angle between each spin and the orbital angular momentum of the binary. In other625

words, the cosine tilts are either drawn independently from a half-normal with scale parameter σt (aligned) or from626

a uniform distribution (isotropic), with the fraction of aligned spin binaries given by ζ. The spin magnitude model627

is given in Eq. (1) and the priors on the population parameters for it are given in Table 1. The priors for the rest628

of the population parameters are set as the same as those used in Abbott et al. (2023b), with the exception of the629

width of the isotropic spin distribution, where we allow the prior to go all the way to zero [σt ∼ U(0, 4), as opposed630

to σt ∼ U(0.1, 4)].631

We use truncated normal distributions to model the spin magnitudes as opposed to beta distributions, since the632

truncated normal distribution is better at recovering sharp distributions near the edges (e.g. a sharp peak at χ ≈ 0)633

than a beta distribution. In addition, a beta distribution may become singular for certain parameter values (α, β > 1),634

causing peaks at both χ → 0 and χ → 1 if these are allowed. When using a hyper-prior to remove these regions the635

resulting prior predictive distribution is not flat in the spin magnitudes, i.e., it gives some preference to χ ≈ 0.5 over636

χ ≈ 0 or χ ≈ 1. Our hyper-priors result in very nearly flat prior predictive distributions over the spin magnitudes.637

A.1. Summary of TGMM population analysis method638

Here we briefly summarize the TGMM population analysis method. We refer to Hussain et al. (2024) for the full639

details of the method. As part of a hierarchical Bayesian inference procedure on GW data (Mandel et al. 2019; Thrane640

& Talbot 2019; Vitale et al. 2022), we need to efficiently estimate certain marginalized likelihoods using importance641

sampling. This requires samples from individual-event posteriors (with prior weights) and samples from an injection642

campaign to estimate detection sensitivity in different parts of parameter space. Those ingredients can allow us to643

infer the distribution of the population parameters in the presence of selection effects.644

In general, importance sampling is needed to estimate integrals of the form645

I(Λ) =

∫
p(θ|Λ)

p(θ | · )
W (θ)

dθ ≈
〈
p(θ | Λ)

W (θ)

〉
θ∼p(θ|·)

, (A2)646

when we have samples from a distribution p(θ | · ) conditional on some assumptions or observations (represented by647

“·”), as well as access to sampling or prior weights W (θ). In particular, the posterior over the population parameters648

using N events is given by649

p(Λ | {di}) = π(Λ) ξ(Λ)−N
N∏
i

L(di | Λ) , (A3)650

where π(Λ) is the hyperprior, ξ(Λ) is the detection efficiency (defined below) and the L(di | Λ) are the individual651

event-level marginalized likelihoods, given by652

L(di | Λ) =

∫
p(θ | Λ)

p(θ | di)
π(θ | ∅) dθ ≈

〈
p(θ | Λ)

π(θ | ∅)

〉
θ∼p(θ|di)

, (A4)653

where in turn p(θ | di) is the posterior for event i, and π(θ | ∅) is the sampling prior used in the original Bayesian654

inference for that analysis, and p(θ | Λ) is the population model whose parameters we wish to infer. The population-655

averaged detection efficiency is calculated using656

ξ(Λ) =

∫
p(θ | Λ)Pdet(θ) dθ ≈

∫
p(θ | Λ0)Pdet(θ)

p(θ | Λ)

p(θ | Λ0)
dθ ≈ Ndet

Ndraw

〈
p(θ | Λ)

p(θ | Λ0)

〉
θ∼pdet(θ|Λ0)

, (A5)657

where Pdet(θ) is the probability of detecting a signal with parameters θ, Λ0 represents some fiducial population from658

which Ndraw signals are simulated to estimate detection efficiency and obtain Ndet samples of detected signals from659

pdet(θ | Λ0), which is proportional, but not equal, to the fiducial population density times the detection probability,660

i.e., p(θ | Λ0) ∝ p(θ | Λ0)Pdet(θ) with proportionality constant Ndet/Ndraw. We can see that Eqs. (A5) and (A4) are661

special cases of Eq. (A2).662
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For an integral of the form of Eq. (A2), we can take the samples from p(θ | · ), representing the event posteriors or663

the detected injection set, and fit to them a weighted sum of truncated multivariate Gaussians664

p(θ | · ) =
∑
k

wkN[a,b](θ | µk,Σk) , (A6)665

where wk are mixture weights, and a and b are the two bounding corners of the hypercube defining the limits of666

the parameters θ. The fitting procedure is described in Lee & Scott (2012), with improvements drawn from Naim &667

Gildea (2012); Frisch & Hanebeck (2021); Salakhutdinov et al. (2003); Hussain et al. (2024). We have released a Julia668

package to perform this fitting procedure, TruncatedGaussianMixtures.jl and its corresponding python wrapper669

truncatedgaussianmixtures.670

Now we assume that the population model is separable, such that the mass and redshift sector (with parameters671

denoted θm,z) separate from the spin sector (covering both spin magnitudes and spin tilts, denoted θχ),672

p(θ | Λ) = p(θχ | Λχ) p(θm,z | Λm,z) , (A7)673

and that, in its most general form, the population model in the spin sector is some mixture of truncated multivariate674

Gaussians (or uniform distributions). For example, our population model for the spin magnitude and spin orientation675

is of this form, as seen in Eqs. (1) and (A1). In general, we can allow for any weighted sum of such separable sub-models676

using our methods.677

To leverage this separability, while fitting the TGMMs of Eq. (A6) we require that the covariance matrix for each678

component does not create correlations between the spin sector and the other sectors, i.e.,679

p(θ | · ) =
∑
k

wkN[a,b](θ
χ | µχ

k ,Σ
χ
k )N[a,b](θ

m,z | µm,z
k ,Σm,z

k ) . (A8)680

This does not impose strong restrictions in the distributions that can be fit and, in particular, does not imply that we681

cannot capture correlations across the two sectors: although each individual TGMM component cannot have cross-682

sector correlations across, cross-sector correlation structure can still be captured by the joint arrangement of multiple683

TGMM components. Indeed, the action of several uncorrelated components together can construct correlations (e.g.,684

as an extreme case, KDEs with uncorrelated bandwidth matrices can easily represent distributions with large-scale685

covariances).686

By substituting Eqs. (A7) and (A8) into (A2) with W (θ) set to the sampling prior for concreteness (equivalently,687

the sampling distribution for sensitivity injections), we get,688

I(Λ) =
∑
k

wk

∫
N[a,b](θ

χ | µχ
k ,Σ

χ
k ) p(θ

χ | Λχ) dθχ

∫
N[a,b](θ

m,z | µm,z
k ,Σm,z

k )
p(θm,z | Λm,z)

π(θm,z | ∅) dθm,z , (A9)689

where we have assumed for now that the sampling prior in spin space is flat, i.e., π(θχ | ∅) = 1, which is true of standard690

LVK priors on the spin magnitudes and cosines of the spin tilts (this constraint is removed in the full description of691

our methodology in Hussain et al. 2024). We then rewrite the above as692

I(Λ) =
∑
k

wk I(µ
χ
k ,Σ

χ
k ,Λχ)

〈
p(θm,z | Λm,z)

π(θm,z | ∅)

〉
θm,z∼N[a,b](θ

m,z|µm,z
k ,Σm,z

k )

. (A10)693

Here the integral I(µχ
k ,Σ

χ
k ,Λ

χ) can be handled semi-analytically using propoerties of Gaussians (using custom nu-694

merical routines we implement), while the expectation over the mass and redshift can be approximated using Monte695

Carlo estimation, as is standard int the LVK literature. To handle cuts and reduce stabilize the TGMM fit in the696

mass and redshift domains, we note that each TGMM fit allows us to extract an assignment of each sample θi to a697

specific TGMM component k. Armed with this assignment, we can then rewrite the expectation over the mass and698

redshift as an expectation over the original posterior samples that were assigned to each component k. This leaves us699

with the expression700

I(Λ) =
∑
k

wk I(µ
χ
k ,Σ

χ
k ,Λ

χ)

 1

Nk

Nk∑
j

p(θm,z
j,k | Λm,z)

π(θm,z
j,k | ∅)

 , (A11)701

where θj,k is the jth sample assigned to the kth component. Equation (A11) is efficient to evaluate.702

https://github.com/Potatoasad/TruncatedGaussianMixtures.jl
https://github.com/Potatoasad/truncatedgaussianmixtures
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We explore the variance properties of the above estimator (A11) for I(Λ) in the companion paper Hussain et al.703

(2024), and find no singular behaviour of the estimator’s variance as population features become narrow. Since we704

only perform the Monte Carlo estimate over the mass and redshift sectors, the variance of this estimator is lower705

than in analyses using Monte Carlo methods across all sectors. We have not computed the variance of the population706

likelihood estimators explicitly in this study, nor applied any cuts associated with the variance of the estimator at707

given hyper-parameter values (e.g., the data-dependent priors discussed in Abbott et al. 2023b).708

A.2. Details on the computation of SDDR709

To compute a SDDR, we need an estimate of the posterior density at a point of interest that often lies at the edges710

of our domain (e.g., χ = 0). We use a custom multivariate KDE to get an estimate of the marginalized hyper-posterior711

from samples. We describe this multivariate KDE in Hussain et al. (2024) but note here that it does not impose712

a zero derivative at the edge and has no bias at the boundary at O(b0), where b is the kernel bandwidth, an issue713

that often plagues other KDE techniques and makes them unsuitable for SDDRs. Since the bias in our method is714

O(b), we can achieve a better estimate of the density at the edge of parameter space by increasing the number of715

samples (reducing the bandwidth). Briefly, our KDE maps each point to a truncated multivariate normal with some716

uncorrelated bandwidth vector b (b = |b|), but the position of this multivariate normal is moved away from the717

location of the sample in such a way that the overall KDE estimate has a bias of only order O(b). This is similar to718

what can be achieved using KDEs with reflective boundary conditions, such as those used by Callister et al. (2022) to719

compute SDDRs. A benefit of our method as compared to reflective KDEs is that we do not require the derivative of720

the kernel be zero at the boundaries, and we do not need the additional kernels to enforce reflective boundaries (which721

can require a large number of additional kernels in higher dimensions).722

We highlight our procedure of extracting BFs and their associated bootstrap uncertainties using the SDDR with723

an illustrative example. Consider computing the SDDR for our fiducial spin-magnitude model, which supports two724

subpopulations, in the limit that all the secondary BHs in the dominant population are nonspinning. This corresponds725

to µa
2 → 0 and σa

2 → 0. We first draw N samples with replacement from our hyper-posterior samples. In this two-726

dimensional space we then get a KDE estimate of the marginal hyper-posterior over µa
2 and σa

2 , p̂(µ
a
2 , σ

a
2 ). Then we727

evaluate the estimator for the BF, B̂, given by728

B̂ =
p̂(µa

2 = 0, σa
2 = 0)

π(µa
2 = 0, σa

2 = 0)
, (A12)729

where π(µa
2 , σ

a
2 ) is the marginalized hyper-prior for our analysis. This gives us an estimate of the BF from one sampling730

of our hyper-posterior. We subsequently repeat this process O(100) times, and get a series of BF estimates. With731

these estimates we compute the bootstrapped median and 90% highest-confidence interval for our estimate of the BF.732

A.3. Details on the computation of BF for event assignments733

We use the following method to compute the BF for a given event in favor of the hypothesis that the even belongs734

to a given of a particular subpopulation, which is used in Fig. 5. Assume that the population model breaks into two735

subpopulations, subpopulation A and subpopulation B, with the fraction η of the population in A. The evidence of736

some event i under the population prior described by Λ is given by Zi(Λ) = L(di|Λ) as defined in (A4).737

We take our hyper-posterior samples, and for each sample Λj , we compute the evidence Zi(Λ
η=1
j ) under the hypoth-738

esis that only subpopulation A exists, η → 1, and then compute the evidence Zi(Λ
η=0
j ) under the hypothesis that only739

subpopulation B exists, η → 0. Here Λη=0
j simply means we set η = 0 for that sample. The ratio gives our estimate740

of the BF between the two population hypotheses for event i741

Bi,j =
Zi(Λ

η=1
j )

Zi(Λ
η=0
j )

, (A13)742

giving us our posterior over BFs for event i. We use these to compute the expected log10 Bi from our posterior743

over Bi using the samples Bi,j as reported in Fig. 5 for the spin-orientation subpopulations and the spin-magnitude744

subpopulations.745

B. FURTHER RESULTS: CORNER PLOTS746

In this Appendix we show corner plots for the parameters governing each subpopulation in our fiducial two-population747

spin-magnitude analysis. Figure 6 shows the two-dimensional and one-dimensional marginals for the parameters of the748
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−0.17
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Figure 6. Corner plot for the posteriors of the hyper-parameters pertaining to the dominant subpopulation.

dominant, slowly spinning population. Figure 7 shows the same marginals but for the parameters of the subdominant,749

rapidly spinning population. As compared to the parameters of the dominant population, the parameters of this750

component are less informed. The parameters controlling the mean µb
i display the bi-modality discussed above, with751

a preferred mode at large µb
1–µ

b
2 values and a less significant mode at small µb

1–µ
b
2 values. This second mode is due752

to residual degeneracy between the two subpopulations, with these small values possible only when the fraction η is753

close to 1/2.754



14

0.80+0.16
−0.24

0.57+0.39
−0.51

0.56+0.40
−0.49

0.57+0.38
−0.52

0.48+0.47
−0.43

0.02+0.68
−0.55

Figure 7. Corner plot for the posteriors of the hyper-parameters pertaining to the subdominant subpopulation.

Figure 8 shows the PPDs of the individual spins from our fiducial two-population analysis, with and without the755

event GW190517 included. The existence of a highly spinning subpopulation is difficult to infer from these individual756

marginal PPDs, appearing only as a heavier tail in the χ1 PPD when GW190517 is included.757
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