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Figure 1: A quasicircular inspiralling binary black hole, drawn by L M Thomas.
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ABSTRACT

Detections of gravitational waves from the mergers of compact binaries have revolu-

tionised our understanding of the universe. As well as confirming a key prediction of

Einstein’s Theory of General Relativity, they have allowed unique opportunities to probe

strong gravity, observe previously dark populations of binary black holes, and constrain

binary formation channels.

Spin precession occurs due to the coupling of the spins of individual black holes with

their orbital motion, resulting in complex and rich dynamics that encode valuable astro-

physical information. To date no confident detection of a precessing binary merger has

been made, in part due to systematics in the waveform models used to infer the existence

of precession. However precession has been shown to exist at the level of the population,

making individual detections a tantalising possibility.

This thesis addresses two key questions in waveform modelling of precession. Firstly,

we develop a strategy to reduce the high dimensionality of precessing binaries, which may

be crucial for ensuring accuracy of precessing waveform models through calibration to

numerical relativity. Secondly, we utilise the power of artificial neural networks to build a

waveform model that faithfully mimics a highly accurate precessing multipolar waveform,

with a fraction of the evaluation cost. Since the detection of precession is predicated on

waveform models which accurately contain the relevant physics and can be practically

used for inference, striking this delicate balance between e�ciency and accuracy is vital.

Finally, we consider the impact of low frequency sensitivity upon detections of pre-

cession in a black hole binary population. Next-generation ground-based detectors are

expected to improve upon the low frequency sensitivity of current instruments, providing

access to more inspiral content in binary mergers. We show that this will allow us to

converge upon the true underlying population spin distribution faster, which could lead

to more accurate constraints upon the formation pathways of binary black holes.

i



To my Mum, without your immeasurable love and support this would not have been

possible.

To my Dad, your immense pride in me helped me believe that it was possible.

ii



ACKNOWLEDGMENTS

My heartfelt thanks go to my fantastic supervisor, Patricia. Your support and men-

torship have been invaluable to me these four years, and have shaped me into the scientist

I am today. I also thank Geraint, whose patience, insight and guidance have always kept

me on track. Without the two of you, there would be no thesis and I am immensely

grateful to you both.

My thanks also go to my other colleagues within the ASR group at Birmingham, and

to the people I have been lucky enough to work with in the LVK collaboration. It’s

been a thrill to see such cutting-edge science happening all around me and be a small

part of it. Thank you to my thesis examiners, Mark and Guy, for fruitful discussion and

a surprisingly enjoyable viva examination. Also to Annelies, for your support and for

making labs fun.

My thanks go to my fellow PhD students and friends at Birmingham, for the Monday

pub quizzes, Thursday pub clubs, and countless co�ee breaks which sometimes lasted

hours: Alex, Daria, Diganta, Eliot, Emily, Evan, Hannah, Lucy, Martin, Matt, Owen,

Piero, Ruairi, Shola, Xinyue, and Yasmin. Thank you especially to Natalie and Alice,

for always being on hand to ask and answer stupid questions and listen to me complain

when my code was broken; maybe this thesis can serve as an example of what not to

do. To Alex ‘Jill’ and to Aysha, for making me laugh even on the most stressful days

and helping me to procrastinate. To Cress and Dan, your friendship has been a constant

through the best and worst of this PhD. Thank you to Cress for always being there with

wine and a chat when I needed, and to Dan, whose terrible jokes made me realise that it

could always be worse. Thank you to Thomas, for your unfailing love and support, and

meticulous proofreading.

Finally, an enormous thank you to my family. To Ben, Charlotte, and little Sophie,

to Omi and Chris, and especially to my parents. You were only ever a phone call away

iii



which means the world to me. To Elsie and Dottie, for the cuddles whenever I needed

them.

This thesis and the work I undertook as part of my PhD is the result of an estimated

270,000 CPU hours of computing time. This equates to roughly 13.2 tonnes of CO2 [1],

or the equivalent of 8 flights between London and Los Angeles.

iv



Contents

Page

1 Introduction 1

2 Gravitational Waves: Generation and Detection 5

2.1 Introduction to Gravitational Waves in General Relativity . . . . . . . . . 5

2.1.1 Gravitational Waves in Linearised Gravity . . . . . . . . . . . . . . 6

2.1.2 Sourcing the Gravitational Waves . . . . . . . . . . . . . . . . . . . 10

2.2 Astrophysical Sources of Gravitational Waves . . . . . . . . . . . . . . . . 13

2.2.1 Compact Binary Coalescences . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Detecting Gravitational Waves from Black Hole Mergers . . . . . . 19

2.2.3 Other Astrophysical Sources of Gravitational Waves . . . . . . . . . 25

2.3 Modelling Gravitational Waveforms . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Weak Field Solutions and the Post-Newtonian Approximation . . . 26

2.3.2 Numerical Relativity and the Strong Field Regime . . . . . . . . . . 30

2.4 E�ects of Black Hole Spin and Precession . . . . . . . . . . . . . . . . . . . 33

2.4.1 Aligned Spin Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Spin Precession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Astrophysical Inference from Gravitational Wave Detections . . . . . . . . 37

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Waveform Modelling for Scientific Interpretation of Gravitational Waves 43

3.1 Multipole Waveform Decomposition . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Modelling Precession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



CONTENTS

3.3 E�ective-One-Body Models . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 E�ective-One-Body Hamiltonian . . . . . . . . . . . . . . . . . . . . 55

3.3.2 Gravitational Waveform Modes . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Radiation-Reaction Force . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.4 Full Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Phenomenological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Closed-Form Expressions and Phenomenological Fits . . . . . . . . 59

3.4.2 Modelling Across Parameter Space . . . . . . . . . . . . . . . . . . 61

3.4.3 Full Inspiral-Merger-Ringdown Waveforms . . . . . . . . . . . . . . 62

3.4.4 Including Precession in Phenom Waveforms . . . . . . . . . . . . . 62

3.5 Surrogate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 A New E�ective Precession Spin for Modelling Multimodal Gravita-

tional Waveforms in the Strong-Field Regime 69

4.1 Calibrating Waveform Models to Precessing Numerical Relativity . . . . . 70

4.1.1 A New E�ective Precession Spin . . . . . . . . . . . . . . . . . . . . 75

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.2 Faithfulness for Precessing Waveforms . . . . . . . . . . . . . . . . 82

4.2.3 Binary Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 Mode Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Strain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.3 Accuracy of the Final Spin and Recoil . . . . . . . . . . . . . . . . 99

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Accelerating Multimodal Gravitational Waveform Models from Pre-

cessing Compact Binaries with Artificial Neural Networks 109

vi



5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.2 Waveform Decomposition . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.1 Training, Validation and Testing Data . . . . . . . . . . . . . . . . 115

5.2.2 Reduced Basis and Empirical Interpolant . . . . . . . . . . . . . . . 119

5.2.3 Parameter Space Fits with Artificial Neural Networks . . . . . . . . 122

5.2.4 Complete Surrogate Model . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.1 Waveform Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.2 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Constraining Precession in the Black Hole Binary Population with

Next-Generation Ground-Based Gravitational Wave Detectors 143

6.1 Hierarchical Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1.1 Hypermodel of Spin Magnitude Distribution . . . . . . . . . . . . . 150

6.1.2 Hypermodel of E�ective Spin Parameter Distribution . . . . . . . . 151

6.2 Systematic Injection Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3 Population Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.3.1 Population Binary Parameters . . . . . . . . . . . . . . . . . . . . . 162

6.3.2 Selected Individual Binary Parameter Estimation Results . . . . . . 170

6.3.3 Population Inference Results . . . . . . . . . . . . . . . . . . . . . . 179

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7 Conclusion 193

vii



List of Figures

1 A quasicircular inspiralling binary black hole, drawn by L M Thomas. . . . 2

2.1 A binary black hole moving on a circular orbit. . . . . . . . . . . . . . . . 14

2.2 Polarisations h+, h◊ of a binary black hole coalescence showing the inspiral,

merger and ringdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Black hole binary with orientation relative to an observer. . . . . . . . . . 20

2.4 Polarisations h+, h◊ of a precessing black hole binary coalescence. . . . . . 37

3.1 Amplitudes in the frequency domain for the spherical harmonic modes

h̃¸,m(f) for a non-spinning black hole binary. . . . . . . . . . . . . . . . . . 47

3.2 The posterior distribution for the luminosity distance dL and inclination

◊JN for the gravitational wave event GW190412. . . . . . . . . . . . . . . . 49

3.3 Definition of the inertial J-frame and the Euler angles. . . . . . . . . . . . 53

4.1 Distribution of the 652 NR simulations used in calibration of PhenomXHM . . 72

4.2 Amplitude of the (2, 1)-mode (left) and the (2, ≠1)-mode (right) for a fidu-

cial precessing binary, showing the fully precessing waveform and wave-

forms parameterised by ‰p and ‰‹. . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Amplitude of the (2, 1)-mode, and time evolution of two quaternion com-

ponents, for a fiducial binary. We show the fully precessing components,

and those parameterised by ‰p and ‰‹. . . . . . . . . . . . . . . . . . . . . 78

4.4 Amplitude of the (2, 1)-mode, and time evolution of two quaternion com-

ponents, for an equal mass fiducial binary. We show the fully precessing

components, and those parameterised by ‰p and ‰‹. . . . . . . . . . . . . . 79

viii



LIST OF FIGURES

4.5 Amplitude of the (2, 1)-mode, and time evolution of two quaternion compo-

nents, for a fiducial binary with mass ratio 3. We show the fully precessing

components, and those parameterised by ‰p and ‰‹. . . . . . . . . . . . . . 80

4.6 Cumulative histograms of white noise matches for the (2, 2)-mode and the

(2, 1)-mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Complete results for white noise matches between the fully spinning wave-

form and each of the e�ective spin parameterisations, ‰̨‹ and ‰p. . . . . . 90

4.8 Full results for the O4 PSD-weighted matches between the fully spinning

waveform and each of the e�ective spin parameterisations, ‰̨‹ and ‰p. . . . 93

4.9 Amplitude of the waveform strain h(t) for the same fiducial binary as in

Figure 4.2 at an inclination of ÿ = fi/3, showing the fully precessing wave-

form and the two e�ective spin parameterisations, ‰p and ‰̨‹. . . . . . . . 94

4.10 Histograms of the sky-and-polarization-averaged strain mismatches MMstrain

between the fully precessing waveform and each of the two-spin mappings

using the O4 PSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.11 SNR-weighted strain mismatches MMSNR as a function of binary total

mass M for 100 binaries for the ‰̨‹ and ‰p mappings. . . . . . . . . . . . . 96

4.12 Sky-and-polarization-averaged strain mismatch MMstrain versus �⁄L(t0)

for the 20,833 binaries with both the ‰̨‹ and ‰p e�ective spin parameteri-

sations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.13 Time evolution of total in-plane spin magnitude S‹ in the coprecessing

frame for the same fiducial binary as in Figure 4.2, with the fully precessing

configuration shown alongside the two e�ective spin mappings. . . . . . . . 97

4.14 Time evolution of the quaternion components q̂0 and q̂3, and q̂1 and q̂2 for

the fiducial precessing binary, for the fully precessing configuration as well

as the two e�ective spin mappings. . . . . . . . . . . . . . . . . . . . . . . 98

ix



LIST OF FIGURES

4.15 Cumulative distribution of matches for two of the four quaternion elements

q̂1 and q̂2, between the fully precessing dynamics and each of the ‰̨‹ and

‰p-mapped systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.16 Error in the azimuthal angle of the final spin state, �„f , in radians, between

the final spin state produced by the fully precessing waveform, ‰f , and

the resulting final spin state of the waveform produced by the ‰̨‹ and ‰p

mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.17 Absolute value of the error in the recoil velocity magnitude �vf , and recoil

velocity tilt angle �◊vf
, between the fully spinning waveform and each of

the ‰̨‹≠ (teal) ‰p≠ mappings. . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.18 Cumulative histograms of white noise mode-by-mode matches for the (2,2)-

mode and the (2,1)-mode for mass ratios q = 1 and q = 3 for the same bina-

ries as in Figure 4.6 with the ‰̨‹-parameterisation and the ‰p-parameterisation.107

5.1 Visualisation of the spin parameters of the entire training dataset coloured

by number density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Graphical representation of the ANN architecture for the coprecessing

(2, 2)-mode phase „22(t; ⁄̨), as an example. . . . . . . . . . . . . . . . . . . 124

5.3 Training and validation losses for the (2, 2)- and (2, 1)-mode, for both am-

plitude and phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Training and validation losses for the (3, 3)- and (4, 4)-modes, both ampli-

tude and phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5 Comparison of the coprecessing mode amplitudes and phases, Euler angles,

and time-domain strain, between the neural network-predicted waveform

components and the true SEOBNRv4PHM data, for a fiducial precessing binary.129

5.6 White noise mismatches between the SEOBNRv4PHM -generated coprecessing

frame mode data and and the neural network-predicted coprecessing mode,

for each of the four modes across the 10, 000 binary test set. . . . . . . . . 130

x



LIST OF FIGURES

5.7 White noise mismatches between the SEOBNRv4PHM -generated coprecessing

frame mode data and and the neural network-predicted coprecessing mode,

for the (2, 2) and the (2, 1)-mode, as computed in Fig. 5.6 but for a range

of di�erent total masses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.8 Worst 5% of test dataset mismatches for the coprecessing (2, 2)- (2, 1)-

modes, shown in parameter space of mass ratio q against in-plane spin

magnitude |‰1‹|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.9 Worst 5% of test dataset mismatches M̄f for the (3, 3)- and (4, 4)-modes,

shown in parameter space of mass ratio and in-plane spin magnitude, and

coloured by mismatch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.10 Time-domain mismatches for the surrogate model for the Euler angles

against the training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.11 Orientation averaged mismatches for SEOBNRv4PHM against SEOBNN_v4PHM_4dq2

for all Æ 4 modes in the J-frame. . . . . . . . . . . . . . . . . . . . . . . . 136

5.12 Computational cost for each step in the waveform construction. . . . . . . 138

5.13 Computational cost per binary for evaluating the 22-mode surrogate model

over batches of N⁄ binaries. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1 PSDs for proposed next generation detectors Cosmic Explorer, the Einstein

Telescope, as well as the proposed LIGO A+ upgrade, and the Virgo design

sensitivity curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 Posterior distributions for the spin parameters of the GW190521-like in-

jected binary whose parameters are shown in Tab. 6.1, for the fixed dL

systematic series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3 Posterior distributions for spin parameters of the GW190521-like injected

binary whose parameters are shown in Tab. 6.1, for the series with fixed

network flnetwork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xi



LIST OF FIGURES

6.4 Median PPDs, 90% credible intervals for the primary and secondary spin

magnitudes distribution ‰1, ‰2, drawn from the inferred population from

GWTC-3. We also plot the best-fitting Beta distributions to the median

PPDs, and the Beta distribution which best fits our sample population of

20 binaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.5 Median PPDs, 90% credible intervals for the e�ective spin parameter dis-

tributions ‰e�, ‰p, drawn from the inferred population from GWTC-3. We

also plot the best-fitting 2D Gaussian to the underlying population, and

the 2D Gaussian which best fits our sample population of 20 binaries. . . . 165

6.6 Distribution of the detector frame total mass M in solar masses M§ and ‰p

for the 20 binaries selected from the population, coloured by the inclination

angle ◊JN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.7 Number of precession cycles –(flow, fISCO)/2fi for the 20 selected binaries. . 169

6.8 90% 2D credible intervals and 1D posterior distributions for the detector-

frame mass parameters of representative binary 6 for each of the 3 flow

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.9 Parameter estimation results for spin parameters for representative binary

6 for each of the 3 flow values. We show results for flow = 20Hz, 10Hz, and

5Hz, and plot the true injected values as shown in Tab. 6.2. . . . . . . . . . 174

6.10 90% 2D credible intervals and 1D posterior distributions for the detector-

frame mass parameters of binary 5 for each of the 3 flow values. We show

results for flow = 20Hz, 10Hz, and 5Hz, and plot the true injected values

as shown in Tab. 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.11 Parameter estimation results for spin parameters for binary 5 for each of

the 3 flow values. We show results for flow = 20Hz, 10Hz, and 5Hz, and

plot the true injected values as shown in Tab. 6.2. . . . . . . . . . . . . . . 176

6.12 �‰e� and �‰p for the 20 selected binaries, defined as the deviation of the

posterior samples from the true injected ‰e� and ‰p values for each binary. 177

xii



6.13 �‰1 and �‰2 for the 20 selected binaries, defined as the deviation of the

posterior samples from the true injected ‰1 and ‰2 values for each binary. . 178

6.14 Results of population inference with the Gaussian Spin hypermodel. We

show the posteriors on the hyperparameters {µ‰e�
, ‡‰e�

, µ‰p , ‡‰p , fl} for each

of the three flow values, 5Hz, 10Hz, and 20Hz. . . . . . . . . . . . . . . . . 180

6.15 Results of population inference with the Beta Magnitudes hypermodel.

We show the posteriors on the hyperparameters {–‰1
, –‰1

, —‰2
, —‰2

} for each

of the three flow values, 5Hz, 10Hz, and 20Hz. . . . . . . . . . . . . . . . . 184

6.16 Posteriors for spin magnitudes ‰1 and ‰2. We show result for each of the

three flow values, showing individual event posteriors of spin magnitudes for

the 20 binaries. We also show the Beta distributions of the median recov-

ered posterior samples of {–‰1
, —‰1

, –‰2
, —‰2

} for each value of flow. Finally

we show Beta distributions for the primary and spin magnitude with the

underlying population hyperparameter values (column 3 of Tab. 6.4), and

distributions with the injected hyperparameter values for the population

of 20 binaries (column 4 of Tab. 6.4). . . . . . . . . . . . . . . . . . . . . . 187

xiii



List of Tables

4.1 Mode energy thresholds for the odd m-modes. . . . . . . . . . . . . . . . . 84

4.2 Binary configurations used in the di�erent match calculations. . . . . . . . 87

5.1 Parameters of the 200, 000 binaries which span our training dataset. . . . . 115

5.2 Greedy tolerances and reduced basis sizes for the amplitude and phase of

each mode, as well as the Euler angles. . . . . . . . . . . . . . . . . . . . . 120

5.3 Maximum and median training and validation dataset mismatches for the

amplitude and phase of each mode, as well as the Euler angles. . . . . . . . 120

5.4 Details of the final neural network architecture for each component. . . . . 123

6.1 Injected and recovered parameters for the systematic series for a GW190521-

like binary, including source frame masses, spin, and extrinsic parameters. . 153

6.2 Injected intrinsic binary parameters, including detector frame masses, and

spins, for the 20 binaries in our population. . . . . . . . . . . . . . . . . . . 166

6.3 Injected extrinsic binary parameters, including network SNR flnetwork for

the 20 binaries in our population. . . . . . . . . . . . . . . . . . . . . . . . 167

6.4 Injected and recovered values of the population hyperparameters for each

of the Beta Magnitudes and Gaussian spin models, for each of the flow

cuto�s of 5Hz, 10Hz and 20Hz. . . . . . . . . . . . . . . . . . . . . . . . . 171

xiv



1. Introduction

Gravitational waves (GWs) are oscillating propagations of a gravitational field, just as

electromagnetic waves such as gamma and radio waves are oscillating propagations of

the electromagnetic field. Photons are emitted by accelerating charged particles, and

analogously, accelerating masses produce GWs. GWs are a key prediction of Einstein’s

Theory of General Relativity (GR) [2] first published in 1916, and were first detected

almost a century later in 2015 from the merger of a binary black hole (BBH), as a sig-

nal named GW150914 [254]. This landmark detection was a milestone in gravitational

science, and there have now been around 90 detections of GW signals from mergers of

binaries made up of black holes (BHs) and/or neutron stars (NSs) [3–5, 7, 45, 134, 218,

255–257] by the GW observatories Advanced LIGO [258, 259] and Virgo [243, 260]. These

discoveries include the first multimessenger observation of a binary neutron star inspiral,

GW170817 [261, 262], the first intermediate mass black hole GW190521 [37, 210], the

first unequal-mass BBH GW190412 [109] and the first confident neutron star–black hole

detections GW200105 and GW200115 [6]. Additional GW candidates have been reported

from analyses of the publicly available data in Refs. [4, 7]. These compact binary merger

observations have allowed us to probe gravity and test GR at a unique energy scale [8–

12]. They have also had a transformative impact on our understanding of the properties

of black holes and neutron stars, enabling us to constrain their mass and spin distribu-

tions [13] and to put them into their astrophysical context.

Astrophysical inference from gravitational wave data mainly relies on waveform models

to extract source properties of the binaries, such as the masses and spins for BBHs. In

order to fully exploit the scientific potential of these observations, waveform models need

to be accurate, fast, and contain as much relevant physics as possible to accurately and

e�ciently extract the binary parameters. In the most generic BBHs, the spin vectors of

the individual BHs may point in any direction. If the spins are aligned or anti-aligned

with the orbital angular momentum of the binary, then the binary motion be restricted
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1. INTRODUCTION

to a fixed 2-dimensional plane known as the orbital plane. However, if one or both of

the BH spins are misaligned with the orbital angular momentum, this will induce spin

precessional motion of the orbital plane and BH spins [14, 15], inducing modulations to the

GW amplitude and phase. This increased complexity in the signal makes precessing GWs

more complicated to model, but the rich structure of precessing waveforms can allow us to

break degeneracies in parameter space [16–19], and distinguish binary formation channels

[20–36], so we can perform more reliable and complete inference. At the time of writing,

there are a small number of detected binaries which may have been precessing [37, 38],

and evidence of precession on the level of the BH population [34, 35], but both improved

precessing waveform models and increased detector sensitivity may be required for more

decisive measurements of precession.

The focus of this thesis is on modelling and inference of precession in BBHs with

ground-based GW detectors. In Chapter 2 we introduce GWs as a natural consequence

of GR, describing compact binary mergers as key sources of GWs for ground-based detec-

tors and the key methods used to model them in the strong-field and weak-field gravity

regimes. We then outline the phenomenology of these mergers, including the e�ects of

spin precession, and give a brief overview of Bayesian inference for determining the binary

source properties from GW detector data. In Chapter 3 we then introduce gravitational

waveform modelling in more detail, introducing the three main approaches to waveform

modelling with an emphasis on the inclusion of spin precession e�ects. In Chapter 4 we

then move on to address a key problem in waveform modelling with precession: how to ef-

fectively incorporate precessing numerical information into semianalytic waveform models

to increase their accuracy. This chapter is based on work published in Ref. [39], where we

derive a new dimensional reduction strategy to accurately replicate precessing waveforms

which include higher modes. In Chapter 5 we then focus on the complementary problem

of ensuring that waveform models which include precession and higher modes are compu-

tationally e�cient enough for practical use. This chapter is based upon Ref. [40], in which

we build a surrogate waveform model using neural networks to speed up an underlying
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model which includes precession and higher modes. In Chapter 6 we then address the

question of how well we can expect to constrain precession in a population of BBHs with

future ground-based GW detectors, whose low frequency sensitivity is as yet uncertain.

Finally, in Chapter 7 we summarise and conclude this thesis.
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2. Gravitational Waves: Generation and

Detection

In Chapter 1, we introduced GWs as a propagation of a gravitational field and a predic-

tion of GR. We explained that GW signals have been detected from mergers of compact

binaries, and introduced the phenomenon of spin precession. In this Chapter, we motivate

the study of GWs as a prediction of GR in more detail in Sec. 2.1, and then derive GWs

in linearised gravity in Subsecs. 2.1.1 and 2.1.2. We then consider astrophysical sources of

GWs in Sec. 2.2, including compact binary coalescences in Subsecs. 2.2.1 and 2.2.2, which

form the main focus of this thesis, and other sources in Subsec. 2.2.3. We then discuss

approximations to modelling GWs in Sec. 2.3, outlining the Post-Newtonian approxima-

tion for weak-field gravity in Subsec. 2.3.1, and numerical relativity for use in strong-field

gravity in Subsec. 2.3.2. In Subsec. 2.4, we describe the e�ects of black hole spin and spin

precession upon the gravitational waveform, before outlining the main concepts behind

Bayesian inference with GW data for BBH parameters in Sec. 2.5. Finally, we summarise

the contents of this chapter in Sec. 2.6. Throughout this thesis, we shall use Greek letter

indices to represent four-vectors, such as xµ, and Latin indices to represent 3-dimensional

spatial vectors xi. Except in Sec. 2.1 where we use SI units for G and c, in the remainder

of this thesis we use units natural units G = c = 1 unless explicitly specified.

2.1 Introduction to Gravitational Waves in General

Relativity

In this section, we first introduce the Einstein field equations, before going on to derive

GWs in linearised gravity in Subsec. 2.1.1, and explicitly considering the source term in

Subsec. 2.1.2. Throughout this section we closely follow the explanations presented in

Refs. [41–43], which we refer the reader to for more details.
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The Einstein equations of General Relativity (GR) are given as

Gµ‹ © Rµ‹ ≠
1
2gµ‹R = 8fiGTµ‹ , (2.1)

where Gµ‹ is the Einstein tensor, Rµ‹ is the Ricci tensor, R is the Ricci scalar, G is

the gravitational constant and Tµ‹ is the energy-momentum tensor. This is the key

equation of Einstein’s Theory of General Relativity, which is the best description we have

of gravity. These equations may look elegant in the form above, but are deceptive in that

they are actually 10 highly nonlinear coupled partial di�erential equations, with very

few exact analytic solutions except in cases of high degrees of symmetry. In the ensuing

subsections, we will show that GWs are a natural consequence of GR, and will derive the

relevant expressions for them to motivate our study of merging binary black holes (BBHs)

as astrophysical sources of these waves.

2.1.1 Gravitational Waves in Linearised Gravity

First we begin by considering GWs in linearised gravity, following the explanations of

[41–43]. We consider a weak gravity approximation, in the form of a small deviation of

the spacetime metric from the flat Minkowski metric,

gµ‹ = ÷µ‹ + hµ‹ , (2.2)

where the metric perturbation Îhµ‹Î π 1, ie. the magnitude of non-zero components of

hµ‹ is small, and ÷µ‹ = diag(≠1, 1, 1, 1). We assume that since the perturbation is small,

indices are raised and lowered with the flat metric ÷µ‹ as usual, which is equivalent to

assuming that the GWs do not carry enough energy and momentum to a�ect their own

propagation. The expression for the inverse metric is

gµ‹ = ÷µ‹
≠ hµ‹ . (2.3)
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We can then construct the components of the Levi-Civita connection (or Christo�el sym-

bols) which are

�⁄
µ‹ = 1

2÷⁄fl (ˆ‹hflµ + ˆµhfl‹ ≠ ˆflhµ‹) = 1
2

1
ˆ‹h⁄

µ + ˆµh⁄
‹ ≠ ˆ⁄hµ‹

2
. (2.4)

We construct the Riemann tensor, and subsequently the Ricci tensor and Ricci curvature

scalar as follows:

R⁄
µfl‹ = ˆfl�⁄

µ‹ ≠ ˆ‹�⁄
µfl = 1

2
1
ˆflˆµh⁄

‹ + ˆ‹ˆ⁄hµfl ≠ ˆflˆ⁄hµ‹ ≠ ˆ‹ˆµh⁄
fl

2
, (2.5)

Rµ‹ = R⁄
µ⁄‹ = 1

2
1
ˆ⁄ˆµh⁄

‹ + ˆ‹ˆ⁄hµ⁄ ≠ ⇤hµ‹ ≠ ˆµˆ‹h
2

, (2.6)

R = Rµ
µ = ˆ‹ˆµh‹

µ ≠ ⇤h, (2.7)

where h = hµ
µ is the trace of the metric perturbation tensor and ⇤ = ˆµˆµ = ÷µ‹ˆµˆ‹ is

the flat space d’Alembertian operator. We may now build the Einstein tensor,

Gµ‹ = Rµ‹ ≠
1
2÷µ‹R = 1

2
1
ˆ⁄ˆ‹h⁄

µ + ˆ⁄ˆµh‹⁄ ≠ ⇤hµ‹ ≠ ˆµˆ‹h ≠ ÷µ‹ˆ⁄ˆflh⁄
fl + ÷µ‹⇤h

2
,

(2.8)

This expression can be simplified using an appropriate gauge transform, which in General

Relativity corresponds to a coordinate transform. The transformation law for tensors

under coordinate transforms reads, for our metric tensor,

hÕ
µ‹(xÕ‡) = ˆx–

ˆxÕµ
ˆx—

ˆxÕ‹ h–—(x‡). (2.9)

This transformation can be used with the infinitesimal coordinate transform

xµ
æ x

Õµ = xµ + ’µ, (2.10)
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2. GRAVITATIONAL WAVES: GENERATION AND DETECTION

to give, to leading order in ’,

hµ‹ æ hÕ
µ‹ = hµ‹ ≠ ˆµ’‹ ≠ ˆ‹’µ. (2.11)

Therefore, if hµ‹ is a solution of the linearised Einstein equations, then so too will hÕ
µ‹

be, for any hÕ
µ‹ given by (2.11). We may therefore now choose to work in a convenient

coordinate system, known as harmonic gauge or de Donder gauge, which satisfies

gµ‹�⁄
µ‹ = 0. (2.12)

This condition, in conjunction with the Christo�el symbol definition of Eq. (2.4) and the

inverse metric definition of Eq. (2.3), gives

ˆµhµ
‹ = 1

2ˆ‹hµ
µ. (2.13)

Using the expression of Eq. (2.8) and the condition of Eq. (2.13),the Einstein equations

(2.1) then become,

⇤hµ‹ ≠
1
2⇤h ÷µ‹ = ≠16fiGTµ‹ . (2.14)

This can be further simplified by transforming to the trace-reversed metric perturbation,

h̄µ‹ = hµ‹ ≠
1
2÷µ‹h, (2.15)

so named because taking the trace of both sides gives h̄ = ÷µ‹ h̄µ‹ = h̄µ
µ = ≠h. Therefore

we can reconstruct the original metric tensor as

hµ‹ = h̄µ‹ ≠
1
2÷µ‹ h̄, (2.16)
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and the harmonic gauge condition of Eq. (2.13) in terms of the trace-reversed metric

perturbation becomes

ˆµh̄µ
‹ = 0. (2.17)

Rewriting Eq. (2.14) in terms of h̄, we obtain

⇤h̄µ‹ = ≠16fiGTµ‹ , (2.18)

which may be recognised as a wave equation with a source term expressed in terms of the

energy momentum tensor, Tµ‹ . Gravitational waves are generated by this matter source

term, however it is instructive to first consider the propagation of gravitational waves

outside the source, in vacuum, where we have Tµ‹ = 0. Then Eq. (2.18) becomes

⇤h̄µ‹ = 0. (2.19)

We now exploit the remaining gauge freedom, and impose that h̄ = 0, which implies that

h̄µ‹ = hµ‹ , and we also impose that h0i = 0. Therefore we have from the condition of

Eq. (2.17) that

ˆ0h00 = 0, (2.20)

which tells us that the time-varying part of the metric perturbation, ie. the radiating GW,

is contained within the spatial components of the metric hij. We are now in transverse-

traceless (TT) gauge, which is defined by the equations

h0µ = 0, (2.21)

hi
i = 0, (2.22)

ˆihij = 0, (2.23)

where the first two equations are a result of the gauge we have imposed, and the third

is as a result of the condition in Eq. (2.17). The general solutions to Eq. (2.19) in this

9
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gauge are

hTT
ij = eije

ikµxµ
, (2.24)

where kµ = (Ê, ki) is the wave vector, and eij is the polarisation tensor. We may choose

that the wave propagates along the z-axis, which gives

hTT
µ‹ =

Q

cccccccccca

0 0 0 0

0 h+ h◊ 0

0 h◊ ≠h+ 0

0 0 0 0

R

ddddddddddb

, (2.25)

where h+ and h◊ are the two independent GW polarisations. We can see from this that

the GW perturbs the spacetime in a plane perpendicular to its direction of travel.

2.1.2 Sourcing the Gravitational Waves

This derivation of the GW signal in TT gauge assumed that our source term Tµ‹ was zero,

however this doesn’t give us any information as to how the GWs are actually generated

by the source. Therefore, we will return to Eq. (2.18) but now assume a non-zero source

term. As we are only considering weak-field gravity here, we assume that the components

of Tµ‹ are small. We also assume that the source matter is localised to some spatial region

�, and that we wish to calculate what the metric perturbation looks like far away from the

region �. These approximations are reasonable for the case of an orbiting binary black

hole source, for example. Outside of the region �, the energy-momentum tensor vanishes,

and so we have Tµ‹(t, x̨Õ) = 0 for x̨Õ /œ �. In the following, we compute the leading-order

contribution to the spatial components of hµ‹ for sources whose internal motions are slow

compared to the speed of light. We follow closely the description in Ref. [44].

With the assumptions specified, we may write the solution for h̄µ‹ outside of � as

usual for a wave equation using a Green’s function G(t, x̨; tÕ, x̨Õ), which describes the field

10
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that arises due to a delta function source:

⇤G(t, x̨; tÕ, x̨Õ) = ”(t ≠ tÕ)”(x̨ ≠ x̨Õ). (2.26)

We can then express the field arising from our actual source by substituting into Eq. (2.18),

h̄µ‹(t, x̨) = ≠16fi
⁄

dtÕdx̨ÕG(t, x̨; tÕ, x̨)Tµ‹(tÕ, x̨Õ), (2.27)

where the form of the Green’s function associated with the operator ⇤ is known to be

G(t, x̨; tÕ, x̨Õ) = ≠
”(tÕ

≠ [t ≠ |x̨ ≠ x̨Õ
|]

4fi|x̨ ≠ x̨Õ|
. (2.28)

The quantity given by [t ≠ |x̨ ≠ x̨Õ
|] is the retarded time, which describes the lag between

propagation of information from events at x̨ to an observer at x̨Õ. We therefore have

h̄µ‹(t, x̨) = 4
⁄

dx̨Õ Tµ‹(t ≠ |x̨ ≠ x̨Õ
|, x̨Õ)

|x̨ ≠ x̨Õ|
. (2.29)

We wish to evaluate this equation at large distances from the source, where we may Taylor

expand
1

|x̨ ≠ x̨Õ|
¥

1
r

+ xixÕi

r3 + ..., (2.30)

where we have introduced r = |x̨|. The spatial portion of Eq. (2.29) then becomes

h̄ij(x̨) = 4
r

⁄
dx̨Õ Tij(t ≠ r, x̨Õ). (2.31)

In linearised theory, the energy-momentum tensor will adhere to the flat-space conversa-

tion law

ˆµT µ‹ = 0, (2.32)

which means that sources will move on geodesics of flat Minkowski space. Splitting this
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up into time and spatial components we have

ˆtT
tt + ˆiT

ti = 0, (2.33)

ˆtT
ti + ˆjT

ij = 0, (2.34)

and so it follows that

ˆ2
t T tt = ˆkˆlT

kl. (2.35)

We may multiply both sides of the equation by xixj, and manipulate the right hand side

to obtain

ˆ2
t (T ttxixj) = ˆkˆl(T klxixj) ≠ 2ˆk(T ikxj + T kjxi) + 2T ij. (2.36)

Inserting this into Eq. (2.31) then gives

h̄ij = 4
r

⁄
dx̨Õ

51
2ˆ2

t (T ttxÕixÕj) + ˆk(T ikxÕj + T kjxÕi) ≠
1
2ˆkˆl(T klxÕixÕj)

6
(2.37)

= 2
r

ˆ2

ˆt2

⁄
dx̨ÕflxÕixÕj, (2.38)

where we have used Gauss’ theorem to recast the second and third terms in the integrand

as surface integrals, which, taking the surface to be outside the source, reduce to zero.

We have also used the fact that T tt is just the mass density fl. We may then define the

moment of inertia tensor Iij to be

Iij(t) =
⁄

dx̨fl(t, x̨Õ)xÕixÕj, (2.39)

and, inserting this into Eq. (2.38), obtain

h̄ij = 2
r

ˆ2

ˆt2 (Iij(t ≠ r)). (2.40)

This result describes GWs generated from a weak source, as observed far away from that

source. It shows that the GWs are produced by the acceleration of masses, and that the
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GW radiation is quadrupolar in nature, as no monopole or dipole solutions are admitted

by the conservation law for the energy momentum tensor in Eq. (2.32). Now that we have

derived the required expressions for GWs within linearised gravity, we will now consider

that astrophysical sources which produce them in the next section.

2.2 Astrophysical Sources of Gravitational Waves

In the following subsections, we introduce the most important astrophysical sources of

gravitational waves. We first introduce compact binary coalescences in Subsec. 2.2.1,

which are the main focus of this thesis. We then for completeness introduce other promis-

ing astrophysical sources of GWs in Subsec. 2.2.3.

2.2.1 Compact Binary Coalescences

The focus of this thesis, and the only sources from which GWs have been detected so far

[45, 134, 218, 255], are the mergers of compact binaries. These binaries are made up of

compact objects (black holes, neutron stars or white dwarfs) in some combination, and

their dynamics is dominated by gravitation. We note that the quadrupole formula of

Eq. (2.40) was derived assuming a flat background, as the conservation law of Eq. (2.32)

forces bodies to move on geodesics of flat Minkowski spacetimes. This assumption is

not applicable to systems whose dynamics are governed by self gravity such as compact

binary systems, and there will be a back reaction on the background spacetime due to

the binary motion. It can be shown, however, that the expression still holds even for such

self-gravitating systems like compact binaries, provided the binary is widely-separated.

For further explanation we refer the reader to Ref. [44], for example. To lowest order this

approximation will describe a binary of point particles with Newtonian dynamics in a flat

Minkowski spacetime background. We assume the binary is moving on a circular orbit

in the xy-plane with orbital separation R and orbital frequency �, as shown in Fig. 2.1.

The orbital angular momentum L̨ of the binary is parallel to the z-axes in this coordinate
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Figure 2.1: A BBH moving on a circular orbit. The orbital separation of the two
black holes, denoted by the black dotted line, is R, and the masses of the two black
holes are m1 and m2, where we assume that m1 Ø m2. The edge of the purple
circle indicates the path of the binary orbit, which, as the BHs are assumed to be
non-spinning here, is confined to the xy-plane.

system.

If we assume that the binary is of equal mass m1 = m2, then the motion of each object

is given by

x̨1(t) =

Q

cccccca

R cos(�t)/2

R sin(�t)/2

0

R

ddddddb
, (2.41)

x̨2(t) =

Q

cccccca

≠R cos(�t)/2

≠R sin(�t)/2

0

R

ddddddb
(2.42)

In the centre-of-mass frame of the binary the mass density fl for our point-particle
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binary is

fl(x̨, t) = M”(z)[”
A

x ≠
R cos(�t)

2

B

”

A

y ≠
R sin(�t)

2

B

+ ”

A

x + R cos(�t)
2

B

”

A

y + R sin(�t)
2

B

], (2.43)

and so we may compute the components of Iij according to Eq. (2.39),

Iij =

Q

cccccca

R2 cos2(�t) R2 sin(�t) cos(�t) 0

R2 sin(�t) cos(�t) R2 sin2(�t) 0

0 0 0

R

ddddddb
(2.44)

= R2

2

Q

cccccca

(1 + cos(2�t) sin(2�t) 0

sin(2�t) (1 ≠ cos(2�t)) 0

0 0 0

R

ddddddb
, (2.45)

which, using Eq. (2.40) gives

h̄ij = ≠
4MR2�2

r

Q

cccccca

cos(2�(t ≠ r)) sin(2�(t ≠ r)) 0

sin(2�(t ≠ r)) ≠ cos(2�(t ≠ r)) 0

0 0 0

R

ddddddb
, (2.46)

where r is the distance to the binary from the observer. If we now consider a binary where

the two objects are not equal mass, this generalises to

h̄ij = ≠
4M÷R2�2

r

Q

cccccca

cos(2�(t ≠ r)) sin(2�(t ≠ r)) 0

sin(2�(t ≠ r)) ≠ cos(2�(t ≠ r)) 0

0 0 0

R

ddddddb
(2.47)

where ÷ is the symmetric mass ratio

÷ = µ

M
, ÷ Æ

1
4 , (2.48)
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µ is the binary reduced mass

µ = m1m2

M
, (2.49)

and M is the total mass

M = m1 + m2. (2.50)

We also introduce here the mass ratio q,

q = m1

m2
Ø 1. (2.51)

In the Newtonian limit, the energy of a circular orbit is given by

E = ≠
÷M2

2R
, (2.52)

and the orbital frequency � is given by

�2 = 2GM

R3 . (2.53)

Therefore, we may express the gravitational wave polarisations in Eq. (2.25) as

h+(t ≠ r) = ≠
2GµM

rR
cos(2�(t ≠ r)), (2.54)

h◊(t ≠ r) = ≠
2GµM

rR
sin(2�(t ≠ r)). (2.55)

The GW flux is given by the quadrupolar formula

F = G

5c5 È
...
Iij

...
IijÍ (2.56)

where
...
Iij = ˆ3

ˆt3 Iij, and so using our previously derived expression for the moment of

inertia tensor in Eq. (2.45), we have

F = 32÷2M2

5R5 = dE

dt
(2.57)
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where, explicitly, we have set G = c = 1. We can therefore calculate the inspiral rate

dR

dt
= dR

dE

dE

dt
= ≠

64
5

µM2

R3 . (2.58)

As the emitted GWs are quadrupolar in nature, they will have frequency fGW = �/fi.

Combining Eqs. (2.53) and (2.58) with this new definition for gravitational wave frequency,

we obtain
dfGW

dt
= 96

5 fi8/3
M

5/3f 11/3
GW , (2.59)

where M is the chirp mass, given by

M = µ3/5M2/5 (2.60)

Eq. (2.59) is the characteristic frequency evolution for a CBC inspiral known as a chirp

signal.

In light of this derivation of the frequency evolution for a compact binary, we broadly

summarise the phenomenology of binary black hole mergers in three stages: inspiral,

merger, and ringdown. In the inspiral, as the binary evolves, it loses binding energy

due to the emission of GWs, so the orbital separation shrinks. The frequency of the

orbit, and resulting GW frequency, increases according to Eq. (2.59), and the amplitude

of the emitted GW signal also increases as the binary inspirals, as can be seen from

Eq. (2.56) with decreasing separation R. This process continues until the binary eventually

plunges and merges into a single object, at which point the GW signal is at its maximum

amplitude. This merger could directly form a black hole, or if the binary masses are

light enough, they may form a stable neutron star, or hypermassive neutron star which

then collapses into a black hole [46]. If the remnant object is a black hole, immediately

after merger it will behave as a perturbed single black hole, and will settle down to a

stable individual black hole configuration. The remnant BH in this ringdown stage will

emit GWs in a spectrum of quasi-normal modes [47], whose frequencies depend only on
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Figure 2.2: Polarisations h+, h◊ of a BBH coalescence showing the inspiral, merger
and ringdown, aligned such that the merger occurs at a time of 0 seconds. The
BBH has parameters {M, q, ‰1, ‰2, dL, ÿ, Â, �0} = {100M§, 1, 0̨, 0̨, 100Mpc, 0, 0, 0}

(see Sec. 2.2.2 for parameter definitions), where �0 is quoted at a reference frequency
of 4Hz, and shows the monotonically increasing amplitude and phase in the inspiral.
At merger the amplitude reaches maximum, before exponentially decaying in the
ringdown where the remnant black is settling down. The waveforms were created
using the SEOBNRv4PHM [48] waveform model within LALSimulation [49].

the mass and spin angular momentum of the BH. A full inspiral-merger-ringdown (IMR)

signal of a BBH merger is depicted in Fig. 2.2, where the waveform polarizations h+(t) and

h◊(t) are aligned such that the merger occurs at a time of 0 seconds. The inspiral before

the merger at t = 0 clearly shows the behaviour of monotonically increasing amplitude

and phase. At t = 0, the merger occurs and the waveform amplitude reaches its peak. In

the ringdown (t > 0) the amplitude decays exponentially as the remnant BH is settling

down and shedding excess energy and angular momentum through GWs as a spectrum of

quasinormal modes [47].
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2.2.2 Detecting Gravitational Waves from Black Hole Mergers

In Subsec. 2.2.1, we derived the expression in Eq. (2.47) for a GW signal of an inspiralling

compact binary in the Newtonian limit. However, we did not take into account the

response of a GW detector, or the distance or orientation of the source with respect to

us as observers. In this section we consider the sensitivity of the detector, and how the

parameters of the binary a�ect the signal we observe, including those parameters intrinsic

to the binary itself, and those which describe its position and orientations relative to an

observer.

GW interferometers detect signals using extremely small phase changes between two

interfering lasers, where the fractional change for a typical CBC signal is of the order

10≠21. In order to e�ectively detect GW signals, the noise sources in a detector which

can cause phase changes must be well understood, so as not to confuse noise with an

astrophysical signal. Sources of noise for ground-based detectors include seismic noise,

thermal noise, shot noise, radiation pressure noise, gravity gradient noise, and many

other sources. We refer the reader to Ref. [50] for a more thorough discussion of noise

sources and extraction of GW signals from detector data. The sum of these noise source

contributions defines the detector sensitivity, characterised by the power spectral density

(PSD) (see Fig. 6.1 for PSDs of the planned Advanced LIGO A+ upgrade [51], and future

ground-based instruments Cosmic Explorer [52] and the Einstein Telescope [53]).

Consider an L-shaped GW detector in a 2-dimensional coordinate system where the

axes are defined as being parallel to the detector arms, as shown in Fig. 2.3. The detector

lies in the xy-plane, with arms positioned at the location of the x and y-axis as shown in

the Figure. The location of the binary on the sky, as seen from the detector, is denoted

by the two angles ◊ and „, and the polarisation angle Â denotes the angle between the

direction of the +-polarisation and the observer’s line of sight, projected in the horizontal

plane of the detector.

We may express the gravitational wave polarisations h+(t) and h◊(t) in the Newtonian
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Figure 2.3: BBH with relative orientation to observer. The L-shaped GW detector
lies within the xy-plane, and the location and orientation of the binary with respect
to this detector are characterised by the angles ◊ and „ to represent the sky location,
Â the polarisation, and � the binary orbital phase. Fig. adapted from Ref. [14].

limit as

h+(t) = ≠
2µM

rD

Ë
1 + (L̂ · N̂)2

È
cos(2�t), (2.61)

h◊(t) = ≠
2µM

rD

Ë
≠2L̂ · N̂

È
sin(2�t), (2.62)

where we note that the only di�erence between these expressions and those of Eqs. (2.54)

are the factors in square brackets which represent the misalignment of the plane of the

binary orbit with respect to the line of sight of the observer. We parameterise this using
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the binary inclination ÿ, which is defined by

cos(ÿ) = L̂ · N̂ . (2.63)

The detector strain h(t) that the GWs produce in the interferometer can be described

as the linear combination of the two polarisations h+(t), h◊(t) as follows,

h(t) = F+(◊, „, Â)h+(t) + F◊(◊, „, Â)h◊(t), (2.64)

where F+, F◊ are the detector beam pattern coe�cients. These are geometric functions

that describe the strength of detector response to a GW signal, depending on the location

of the source in the sky, and its relative orientation to the plane of the detector, denoted

by the angles ◊, „ and Â in Fig. 2.3.

In Eq. (2.59) we derived the frequency evolution for a non-spinning, inspiralling BBH.

We note that both Eq. (2.59) and also Eqs. (2.61), (2.62) are invariant under the trans-

formation

(f, M, µ, r, R, t) ∆ (f/⁄, M⁄, µ⁄, r⁄, R⁄, t⁄) . (2.65)

Therefore we can derive from the GW signal the redshifted masses represented by M⁄,

often called detector-frame masses, where

Mdetector = (1 + z)Msource, (2.66)

where Msource is the true chirp mass as measured in the frame of the binary source, and

z is the redshift. Similar relations will hold for the other binary mass parameters. This

redshift value z will have an associated luminosity distance dL (see Eq. (6.36)). We note

that as we directly measure the detector frame chirp mass Mdetector, which will be larger

than Msource, the relation in Eq. (2.65) implies that the frequency of the GW signal will be

redshifted to appear lower. This mass-frequency scaling is a general feature of GWs from

CBCs, that the merger of binaries with higher total masses occurs at lower frequencies
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than binaries with smaller masses. Consequently when building gravitational waveform

models as discussed further in Chap. 3, we can treat the total mass M as an overall scaling

factor.

Therefore a GW signal from a merging BBH depends upon 16 parameters:

h(t; ◊̨) = h(t; m1, m2, ‰̨1, ‰̨2, e, dL, –, ”, ÿ, Â, tc, „c), (2.67)

where m1 and m2 are the masses of the two BHs with m1 Ø m2, which may be alternatively

parameterised by any pair combination of: the total mass M from Eq. (2.50); the chirp

mass M of Eq. (2.60); the reduced mass µ from Eq. (2.49); the symmetric mass ratio ÷

from Eq. (2.48); or the mass ratio q given from Eq. (2.51).

The vectors ‰̨1 and ‰̨2 are the normalised 3-dimensional spin vectors of the individual

black holes, defined as

‰̨i = S̨i

m2
i

< 1, (2.68)

where the inequality is as a result of the Kerr limit for BH spins. The orbital eccentricity e

we will hereafter assume to be zero. This is because, while the binary may have formed on

an eccentric orbit, the radiation of GWs throughout the early inspiral e�ciently removes

energy and angular momentum from the system, and so most binaries are expected to

circularise by the time they reach the frequency band of ground-based detectors [54].

These quantities make up the intrinsic parameters of the binary, as they are properties of

the binary itself rather than its position and orientation with respect to an observer. For

convenience, we define the set of 7 intrinsic parameters required for modelling a binary

with generically-oriented spins as

◊̨ = {q, ‰̨1, ‰̨2}, (2.69)

where we have not included the total mass M as it acts only as a scaling factor upon the

waveform.
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The remaining parameters are the extrinsic parameters, where dL is the luminosity

distance between the binary and the observer, Â is the polarisation angle from Fig. 2.3,

and – and ” are the right ascension and declination respectively which represent the

location of the binary source on the sky from the observer’s perspective. The inclination

ÿ is the angle between the binary orbital angular momentum L̨ and the observer’s line of

sight N̨ as seen in Fig. 2.3, defined by

cos(ÿ) = L̂ · N̂ . (2.70)

This orientation dependence can be alternatively parameterised by ◊JN . This is defined

as the angle between N̂ and the binary total angular momentum J̨ , which is the sum of

the orbital angular and the individual spin angular momenta,

J̨ = L̨ + S̨1 + S̨2, (2.71)

and we have that

cos(◊JN) = Ĵ · N̂ . (2.72)

Finally, tc and „c are the time and binary phase at the time of coalescence. We note that

each of these parameters will imprint upon the GW signal in di�erent ways, and there

exists degeneracies between the e�ects of di�erent parameters upon the waveform. One

example is the degeneracy between mass ratio q and the components of BH spin aligned

with L̨, which we discuss in more detail in Subsec. 2.2.2, and a further example is provided

in Sec. 3.1 between dL and ÿ.

Throughout this thesis, we will switch between descriptions of the gravitational wave-

form in the time domain and frequency (Fourier) domain, depending on convenience.

Therefore we define here the Fourier transform for a function f(t) as

F(f(t)) =
⁄ Œ

≠Œ
f(t)e2fiiftdt = f̃(t). (2.73)
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We will also often require a method to quantify the agreement between two waveforms,

so we will employ the (frequency-domain, noise-weighted) inner product or match Mf

optimised over a time and phase shift, given as

Mf (h1, h2) = max
tc,„0

Èh1, h2ÍÒ
Èh1, h1ÍÈh2, h2Í

, (2.74)

where the inner product is defined as

Èh1, h2Í = 4Ÿ

⁄ fmax

fmin

h̃1(f)h̃ú
2(f)

Sn(|f |) df, (2.75)

with Sn(f) the one-sided PSD of the detector noise, h̃ indicates the Fourier transform of

h, and h̃ú the complex conjugate. The mismatch can now be defined as

M̄f (h1, h2) © 1 ≠ Mf (h1, h2). (2.76)

We will also find it convenient to introduce a normalized waveform ĥ = h/
Ò

Èh, hÍ.

When using a white-noise PSD, i.e. independent of frequency, it is convenient to define

a time-domain overlap

Èh1, h2Ít = Ÿ

⁄ tmax

tmin

h1(t)hú
2(t) dt, (2.77)

with an inherited norm ÎhÎ
2
t = Èh, hÍt. We can then define an analogous time domain

match as

Mt(h1, h2) = Èh1, h2Ít

Îh1Ît Îh2Ît
, (2.78)

and the associated mismatch as M̄t = 1 ≠ Mt.
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2.2.3 Other Astrophysical Sources of Gravitational Waves

Aside from the mergers of compact binaries, there are several other astrophysical phenom-

ena which are expected to produce GW signals observable by current or future ground-

based detectors. We highlight a few key examples here for completeness, noting their

morphology and how it di�ers from CBC signals, but for a more thorough review we refer

the reader to, for example, Refs. [41, 55].

When a massive star with mass Mú & 10M§ comes to the end of its life, it can

no longer support itself with outward radiation pressure, and so undergoes gravitational

collapse. Matter from the outer layers of the dying star descend radially inwards onto the

core, after which it is expelled rapidly in a supernova explosion. This satisfies many of

the requirements for a strong GW emission, as this large amount of mass in a relatively

concentrated volume of space reaches relativistic speeds. The degree of asymmetry in the

explosion will also determine the strength of the emitted signal, though mechanisms for

producing non-spherical emission may include rapid rotation of the star’s core leading

to instabilities during collapse, or the presence of magnetic fields within the star. The

resulting GW signal will be a short burst, which may be modelled by a sum of sine

Gaussians.

Another key theorised source of GW signals is from rapidly spinning neutron stars,

known as pulsars, with some degree of asymmetry in their mass distribution. This asym-

metry will induce the time-varying quadrupole moment and lead to continuous GW emis-

sion at a single frequency, so the pulsar will lose energy and angular momentum (it will

‘spin down’). Non-axisymmetry could be caused by oblateness misaligned with the pul-

sar’s axis of rotation, for example due to misalignment of the star’s internal magnetic field

with this axis, or as a result of accreting material from a companion star. As in the core

collapse case above, the strength of the GW emission will be proportional to the degree

of asymmetry in the source. Since no GW signals from known pulsars have been detected

thus far, this allows us to place upper limits on the asymmetry in the mass distribution

of these sources, for example in Ref. [56].
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Finally, in addition to individually resolvable sources of GW signals, we also expect

a stochastic background of GWs which may span across a wide range of frequencies.

This background is thought to contain contributions from a variety of sources, including

early universe components analogous to the cosmic microwave background of photons.

Phenomena such as early universe phase transitions, signatures of cosmic strings, and

amplification of primordial density fluctuations through inflation are all expected to pro-

duce GW background contributions, though no detection of a stochastic background has

yet been made.

2.3 Modelling Gravitational Waveforms

As previously mentioned in Sec. 2.2.1, the typical gravitational waveform from a CBC

can be divided into three main regions: the inspiral, merger, and ringdown, as shown

in Fig. 2.2. In the inspiral, where the separation of the binary is large and the orbital

velocity is small, we need not solve the full nonlinear Einstein field equations exactly, and

instead use a post-Newtonian (PN) expansion [57] method to derive accurate expressions

for the waveform. In the strong-field (later inspiral, plunge, merger and ringdown), the

PN approximation breaks down as the orbital separation shrinks and velocities become

highly relativistic, and we must use numerical methods to computationally solve the

full Einstein field equations with numerical relativity. In the following subsections, we

briefly summarise each of these methods. We note that these approximations are only the

building blocks of state-of-the-art waveform approximants, in Chapter 3 we describe in

more detail how these pieces are used to create accurate waveforms of a full IMR signal.

2.3.1 Weak Field Solutions and the Post-Newtonian Approxi-

mation

Generation of GWs in linearised gravity (as seen in Sec. 2.1) assumes that the background

spacetime can be taken as flat, thereby assuming that the system producing GWs con-
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tributes negligibly to the spacetime curvature near to the source, and so the background

spacetime curvature and source velocity can be treated as independent. This is a reason-

able approximation for systems whose dynamics is not governed by gravitational forces,

but this is not the case for CBCs, as these systems are held together by gravity (self-

gravitating) and so the spacetime curvature and source velocities are not independent:

the binary motion is a�ected by the spacetime curvature produced by its own motion. In

this case, we need to take into account the curvature of the background spacetime near

the source due to its motion.

We consider a compact binary source which is slowly-moving and weakly self-gravitating,

such that v/c π 1 where v is the characteristic source velocity (in this the orbital velocity

of the black holes), and Rs/d π 1 where RS is the Schwarzschild radius and d is the

typical size of the system (the black hole separation).

In the early inspiral, the two bodies are far apart such that their separation R is much

larger than the intrinsic characteristic scale of the binary set by the total mass M . In

this regime, the binary undergoes quasicircular motion of gradually decaying orbits due

to the emission of GWs, and the system can be described as slowly-moving and weakly

self-gravitating. Therefore, the motion can be approximately solved using a PN expansion

in the characteristic velocity of the binary, v
c . Here we present only the fundamental ideas

which govern this formalism, and for a more thorough treatment we refer the reader to

the review article in Ref. [57].

We may schematically write the PN-expanded equations of motion for the binary as

[15],
d2xi

dt2 = ≠
mxi

r3

Ë
1 + O (‘) + O

1
‘3/2

2
+ O

1
‘2

2
+ O

1
‘5/2

2
+ ...

È
(2.79)

where we introduce the parameter ‘ ©

Ò
v/c and have expanded up to (post)5/2

≠Newtonian

(2.5PN) order, where the maximum power of ‘ represents the order of expansion. The

leading order term is the Newtonian limit, which we obtain by combining the expressions

for the Newtonian polarisations in Eq. (2.47) and Eqs. (2.61), (2.61) into the complex
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strain,

h(t) = h+(t) ≠ ih◊(t), (2.80)

to obtain

h(t) = ≠A
4M‹v2

r
e≠i(2�t+�0), (2.81)

where here A is an amplitude factor which groups together the e�ects of the sky location,

detector geometry and binary inclination as previously discussed in Sec. 2.2.2. Therefore

the evolution of the binary and GW emission is governed by the orbital phase evolution,

since

� = d�orb

dt
= v3(t)

M
, (2.82)

and so the time evolution of the binary phase must also be predicted as an expansion in

‘.

In the PN approximation, we assume that the emitted gravitational binding energy

E(v) and GW flux F(v) are expansions in the orbital velocity v/c. We have already seen

the Newtonian limit for the energy of a circular orbit in Eq. (2.52), and the GW flux

in Eq. (2.56). We assume that the binary undergoes circular orbits, which are gradually

decaying, and so the velocity can be expressed using Kepler’s law as

v =
Û

M

R
= (M�)1/3 , (2.83)

and so the energy and flux become

E0(v) = ≠
M÷

2 v2, (2.84)

F0(v) = ≠
32
5 ÷2v10, (2.85)

where here the subscript 0 denotes that we are assuming Newtonian gravity for the back-

ground spacetime. More specifically, we assume in this lowest order approximation that

the binary motion is not a�ected by the spacetime curvature produced by its own motion.
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We may then define the expansions in v for energy and flux,

E(v, ◊̨) = E0

C

1 +
nÿ

i=2
Ei(◊̨)vi + ln(v)

nÿ

i=8
E(l)

i (◊̨)vi

D

+ ..., (2.86)

F(v, ◊̨) = F0

C

1 +
nÿ

i=2
Fi(◊̨)vi + ln(v)

nÿ

i=6
F

(l)
i (◊̨)vi

D

+ ... (2.87)

where we are explicitly assuming units of c = 1, and ◊̨ are the parameters of the binary.

The quantities Ei and Li are the i/2-order PN term coe�cients in the PN expansions

for flux and energy respectively, and we also have logarithmic terms in the expansions

beginning at 4-PN order in the energy, and 3-PN order in the flux.

We make the assumption that the orbital decay is entirely due to GW emission, and

therefore due to conservation of energy we have

F(v) = ≠
dE(v)

dt
. (2.88)

Furthermore, we assume that the binary undergoes an adiabatic inspiral, in which the

fractional change of the orbital frequency over a single orbital period is small, and so we

have �̇/�2
π 1. Therefore we can specify the phase evolution with the two equations:

d�orb(t)
dt

= v3

M
, (2.89)

dv(t)
dt

= ≠
F(v)
E Õ(v) , (2.90)

where E Õ(v) denotes the derivative of E with respect to v. These di�erential equations

can then be solved to obtain an expression for the waveform. The di�erent approaches

to solving these systems of equations are commonly referred to as PN approximants, for

which a thorough discussion and comparison can be found in Ref. [58]. In order to define

the energy and flux associated with the GWs themselves, a stress-energy tensor for the

GWs must then be constructed. For an example of construction of a pseudo-tensor from

second-order terms in hµ‹ , where the GWs are presumed to be perturbations of Minkowski
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space, we refer the reader to Ref. [41].

Therefore, having seen in Sec. 2.1.1 that GWs are produced from a time varying

quadrupole moment at leading order, the PN approximation now provides a description

of the GWs in terms of higher order radiative multipoles [57, 59, 60]. These multipoles are

coupled to the GW energy and flux, and are summed to produce the GWs in terms of hT T
ij .

The polarizations waveforms h+,◊ are then computed using projections, and schematically

we have

h(n)
+,◊ = 2M÷

r
v2

Œÿ

n=0
vnH(n/2)

+,◊ , (2.91)

where n is the PN order, and the PN coe�cients H+,◊, which depend on the binary orbital

phase �, are given for example in Ref. [57] up to 3.5PN for a non-spinning binary.

2.3.2 Numerical Relativity and the Strong Field Regime

In the previous subsection, we discussed the PN approximation, which can be used to

compute waveforms in the inspiral phase of a BH merger, where the binary is slow-

moving. However, as the binary separation decreases and the orbital velocity becomes

more relativistic, the PN approximation breaks down. Therefore we must use the full

nonlinear Einstein field equations, solving them numerically with numerical relativity

(NR). In this subsection, we briefly discuss the main concepts behind NR as relevant to

this thesis, and for a more thorough discussion we refer the reader to Refs. [61, 62], for

example.

Numerical relativity is a computational approach to solve the full, nonlinear Einstein

field equations, which formally depend on all ten degrees of freedom in the metric tensor

gµ‹ . We are no longer assuming a weak perturbation hµ‹ on a Minkowski metric as

we are in the strong-field regime of gravity, and so this approach requires solving ten

coupled, nonlinear, and partial di�erential equations. Introduction of a multidimensional

grid coordinate system (usually one time-like and three space-like coordinates, referred

to as 3 + 1 dimensions) allows for formulation of these ten equations into six dynamical
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equations, and four constraint equations, commonly referred to as ADM equations after

Arnowitt, Deser and Misner [63]. The dynamical equations describe the time evolution

of the spatial portion of the metric tensor gij, and its time derivative ġij, given a set of

initial conditions (often called initial data) which must satisfy the constraint equations.

These 3 + 1 equations are not unique, and one must choose a formulation which allows

for stable evolution of the Einstein equations through time integration. An example of

a reformulation which satisfies well-posedness of the equations for CBCs is the BSSN

(Baumgarte, Shapiro, Shibata, Nakamura) [64, 65] formulation. It was introduced in

the 1990s and introduces auxiliary variables that help to regularize the equations near

singularities, allowing for more stable numerical solutions. We note that not all successful

methods use a 3 + 1 formulation, for example the generalised harmonic decomposition

was used to complete the first successful simulation of a BBH merger, and extraction of

the resulting GW signal, in 2005 by Pretorius [66]. Having formulated the equations,

gauge freedom must then be fixed by specifying four variables: the lapse function and

shift vector. The lapse function describes the proper time of an observer’s normal to

their current spatial hypersurface, and the 3-dimensional shift vector is the deviation of

the observer’s timeline from the normal to the current hypersurface, projected onto that

hypersurface.

Beginning from a numerical solution to the constraint equations, the system is then

evolved forwards in time until the merger using numerical integration methods. To deal

with the curvature singularity of the BHs, approaches can be used such as BH excision [67],

where the interior of the apparent horizon is removed from the computational domain, or

a moving puncture method where slices are placed such that they do not include the BH

singularity. Extraction of the GW signal should be performed as far away from the source

as possible, which is obfuscated by a finite sized computational grid, so extrapolation

methods of extraction at successively larger radii may be used. Finally, simulations of

merging BBHs need to adequately cover both the areas of large curvature near the BH

horizons, as well as far from the source where GW extraction takes place. Therefore

31



2. GRAVITATIONAL WAVES: GENERATION AND DETECTION

covering the whole domain with a single grid spacing is computationally infeasible, and so

simulations often use multiple overlapping grids with fixed or adaptive mesh refinement.

The field of NR has made significant progress in previous decades, particularly with

the development of powerful numerical techniques and advances in high-performance com-

puting. There now exists several catalogs of BBH merger simulations [68, 69] which are

frequently used (often in conjunction with other waveform modelling techniques) for GW

data analysis and full IMR waveform modelling. However, despite its successes, the main

production codes have not changed their numerical methods in the last 10-15 years, and

NR still faces several challenges. One of the main challenges is the computational cost

of simulations, which can be prohibitively expensive for lower mass binaries with longer

waveforms in the frequency band observed by LIGO-Virgo-KAGRA. Therefore to produce

longer waveforms which extend far into the inspiral for BBH signals, and cover a significant

portion of the evolution of binaries containing neutron stars, NR waveforms often require

hybridisation with PN or other semianalytic approximations to extend their length. We

will discuss approaches to combine PN and NR information to produce full IMR wave-

forms in Chapter 3. Additionally, practical di�culties in formulation and convergence

of simulations for more complex binaries, such as moderate-high mass ratio (q & 18)

and highly spinning and precessing binaries, means that parameter space coverage of NR

simulations in these areas of parameter space remains sparse. Therefore semianalytic ap-

proaches to waveform modelling are still a crucial tool for GW data analysis to bridge

these gaps. In the following section, we discuss BH spin and precession further, high-

lighting heir e�ect upon a gravitational waveform and the resulting added complexity of

a waveform from a binary which includes precession.

2.4 E�ects of Black Hole Spin and Precession

In this section, we discuss in more detail the e�ect of BH spin upon the gravitational

waveform. We separate these e�ects into two distinct scenarios, firstly when the BH spins
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are aligned with the orbital angular momentum L̨, and secondly when they are misaligned

and display the spin precession. The spin of a BBHs is an information tracer of the bi-

nary’s formation history, and accurate measurements of BH spins will help constrain BBH

formation channels [21–29, 31–36]. For a more thorough review of BBH formation chan-

nels, we refer the reader to, eg. Refs. [21, 70]. In this section, we describe the behaviour

of both spin-aligned and precessing binaries, and the resulting waveform phenomenology.

2.4.1 Aligned Spin Binaries

If the binary is non-spinning, ‰̨1 = ‰̨2 = 0, or the spins are aligned with the orbital

angular momentum, L̂ · ‰̨1 = L̂ · ‰̨2 = 01, then the orbital plane remains fixed in time and

the trajectory of the BHs will be confined to this fixed plane through inspiral to merger.

Therefore, if the BH vectors ‰1, ‰2 are (anti-)aligned with L̂ at some initial reference time

t0, ie. if we have

‰1x(t0) = ‰1y(t0) = ‰2x(t0) = ‰2y(t0) = 0, (2.92)

then they will remain (anti-)aligned. The predominant e�ect of the aligned spins is to

a�ect the inspiral rate, and this influence can be parameterised by a weighted sum of

the two spins ‰1z, ‰2z, and so e�cient waveform models for aligned-spin binaries can be

produced with only one spin parameter rather than two [71–75]. This parameter ‰e� is

defined as

‰e� = m1‰1z + m2‰2z

M
(2.93)

and is a constant of the 2PN equations of motion in the absence of radiation reaction

[76], and approximately constant when radiation reaction is included. For example, the

PN expression for the binary phase up to 1.5PN order is given by,

�(v) = �0 ≠
1

32v5÷

3
1 + v2

555÷

12 + 3715
1008

6
+ v3

5565
24 ‰PN ≠ 10fi

64
, (2.94)

1
We note the di�erence between the orbital angular momentum L̂ and its Newtonian approximation

L̂N; however, in this thesis we will not distinguish between them.
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where

‰PN = ‰e� ≠
38÷

113 (‰1z + ‰2z) . (2.95)

Therefore if ‰e� is positive, the phase evolution will be slower, the inspiral rate will

decrease, and the inspiral will be longer. Similarly if ‰e� is negative, the inspiral will be

shorter. This is known as the orbital hangup e�ect [263]. Additionally, the magnitudes

of the spins will remain approximately constant throughout the inspiral, therefore the

intrinsic parameter space for aligned spin binaries (scaling out the total mass M) is 3-

dimensional in mass ratio q, ‰1z and ‰2z. In terms of waveform phenomenology, the

GW signal from a spin-aligned binary will be qualitatively very similar to that of a

non-spinning binary (for example as shown in Fig. 2.2), with the amplitude and phase

increasing monotonically in the inspiral up to merger, but a modified rate of phasing due

to the spins.

We briefly note that as well as the degeneracy between aligned binary spins which

map to the same ‰e�, there also exists for aligned-spin binaries a parameter degeneracy

between mass ratio q and ‰e� [264]. The both of these parameters have an e�ect of

modifying the inspiral rate.

2.4.2 Spin Precession

If the black holes’ spins are misaligned with the direction of the orbital angular momentum

L̂ of the binary motion, spin-induced precession of the orbital plane occurs [14, 15, 77, 78],

breaking the equatorial symmetry of the system. The precession of the orbital plane is

driven by the spin components ‰̨1‹ and ‰̨2‹ instantaneously perpendicular to L̂, defined

as ‰̨i‹ = ‰̨i ◊ L̂. This can be seen from the equations of motion for a precessing binary,
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which at 2PN order, and averaged over a single circular orbit, are given by [14]:

˙̨
L = L

R3

53
2 + 3m2

2m1

4
S̨1 +

3
2 + 3m1

2m2

4
S̨2

6
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2

1
R3

Ë1
S̨2.L̂

2
S̨1 +

1
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3
M

R
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(2.96)

˙̨
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R3
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µM1/2r1/2

3
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2
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6
◊ S̨1, (2.97)

˙̨
S2 = 1

R3
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µM1/2r1/2

3
2 + 3m1

2m2
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L̂
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R3

51
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2

1
S̨2.L̂

2
L̂

6
◊ S̨2. (2.98)

Therefore in a precessing binary, the direction of L̂ and the orientation of the two spins Ŝi

become time dependent. The precession equations above include the leading order spin-

orbit couplings (terms proportional to L̂◊S̨i) and spin-spin couplings (terms proportional

to S̨1 ◊S̨2). The spin-orbit couplings are the most dominant e�ect of precession, occurring

at 1.5PN order, and induce the precessional motion of the orbital plane. This orbital plane

precession is known as Lense-Thirring precession, and is a purely relativistic e�ect not

present in Newtonian gravity, as are the higher PN order spin coupling e�ects. The spin-

spin couplings start at 2PN order, and introduce nutation of the spins and orbital angular

momentum. We note, however, that spin nutation has also been shown to occur in the

case of single spin precessing binaries.

In the case of simple precession (which covers all except a few specific spins, and

upon which we will focus exclusively hereafter), throughout the inspiral L̂(t) traces a

cone centered around the direction of the total angular momentum Ĵ , which remains

approximately spatially fixed [14, 15], i.e., Ĵ(t) ƒ Ĵtæ≠Œ, where J̨ = L̨+ S̨1 + S̨2. We note

that this fixed direction can be seen as a direct consequence of the precession equations

at 2PN order (Eqs. (2.96)-(2.98)), and so the direction of Ĵ is fixed at this PN order. The

opening angle of this precession cone ⁄L(t) is defined as [14]

cos(⁄L(t)) © L̂(t) · Ĵ(t) = L(t) + SÎ(t)Ò
(L(t) + SÎ(t))2 + S2

‹(t)
, (2.99)
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where S̨(t) = S̨1(t) + S̨2(t) is the total spin of the binary with S‹(t) = |S̨(t) ◊ L̂(t)|

and SÎ(t) = S̨(t) · L̂(t). The precession cone opening angle grows on the precession

timescale, which lies between the shorter orbital timescale and the longer radiation reac-

tion timescale, ie. the time it takes for the binary to merge.

Precession introduces characteristic amplitude and phase modulations in the GW sig-

nal, as can be seen in Fig. 2.4. In this Figure, we see the polarisations h+(t) for a precessing

binary with parameters {M, q, ‰1, ‰2, dL, ÿ, Â, �0} = {100M§, 3, {0.6, 0.3, 0}, {0.1, ≠0.9, 0},

100Mpc, 0, 0, 0}, where �0 is quoted at a reference frequency of 4Hz. The modulations

in the amplitude due to spin precession can be seen clearly, and the amplitude no longer

increases monotonically with time as in the case of a spin-aligned or non-spinning binary.

Precession also induces phase modulations into the GW signal, though these are not vis-

ible in the Figure presented here. We can also clearly see the separation of timescales,

as the time taken for the binary to complete a single orbital (double the timescale of one

complete GW oscillation), is much shorter than the precessional timescale over which the

amplitude modulations vary. This in turn is much shorter than the overall timescale for

the binary to inspiral, the radiation-reaction timescale.

Precession also introduces a richer mode structure into the GW signal as will be

discussed in more detail in Sec. 3.2, and modifies the properties of the merger remnant

object from those of a spin-aligned binary, such as the final spin and recoil velocity of the

remnant BH.

Due to their complexity, precessing waveforms encode vast amounts of information

which can be used to break parameter degeneracies [16–19], such as the aforementioned

mass-spin degeneracy between the mass ratio and ‰e� [79–81] as one example.
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Figure 2.4: Polarisations h+, h◊ of a precessing BBH coalescence with parameters
{M, q, ‰̨1, ‰̨2, dL, ÿ, Â, �0} = {100M§, 3, [0.6, 0.3, 0] , [0.1, ≠0.9, 0] , 100 Mpc, 0, 0, 0}

(where �0, ‰̨1 and ‰̨2 are quoted at a reference frequency of 4Hz), showing the
induced amplitude modulations. The waveforms were produced with the waveform
model SEOBNRv4PHM [48] within LALSimulation [49].

2.5 Astrophysical Inference from Gravitational Wave

Detections

In Sec. 2.2.2 we described how the GW signal from a merging binary depends on its

parameters, and orientation relative to a GW detector. However, we did not consider

how, given data from a detected GW signal, we may actually go about determining

those binary parameters. In this section, we outline the main concepts behind parameter

estimation for BBH signals. The fundamental ideas presented here will be used as part

of our analysis in later chapters, notably as part of the inference performed in Chapter 6.

For a more thorough overview of Bayesian inference in GW astronomy we refer the reader

to Ref. [82].

The aim of BBH parameter estimation is, given detector strain data d (see Eq. (2.64)),

to construct a posterior probability density function for the BBH parameters ◊̨ which
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produced that strain data,

p(◊̨|d), (2.100)

which is a normalised such that

⁄
d◊̨ p(◊̨|d) = 1. (2.101)

We begin with Bayes’ theorem,

p(◊̨|d) = L(d|◊̨) fi(◊̨)
s

d◊̨ L(d|◊̨) fi(◊̨)
, (2.102)

where L is the likelihood function of the data d given the BBH parameters ◊̨, fi(◊̨) is our

prior distribution on ◊̨, and the denominator is the evidence, which here acts as a normal-

isation factor. The likelihood describes the probability of a particular detector output,

given the BBH parameters ◊̨ which describe the astrophysical signal. We may choose

the functional form of the likelihood function, and by doing so we implicitly introduce

a model for the noise. For gravitational wave detectors, we usually choose the following

form:

L(d|◊̨) = 1
Ô

2fi‡2
exp

Q

a≠
1
2

|d ≠ µ(◊̨)|2
‡2

R

b , (2.103)

and assume that the detector noise ‡ is stationary over the timescale of a CBC signal,

and Gaussian with zero mean. Here fi refers to the mathematical constant, and µ(◊̨) is a

representation of the gravitational wave strain given ◊̨.

Similarly to the likelihood function, the prior fi(◊̨) is also something we may choose,

and represents our prior belief about the parameters ◊̨. If we are ignorant about ◊̨,

we may choose priors such as a uniform distribution which has support across a broad

range of parameter space, for example. We note that since a quasicircular BBH signal is

parameterised by 15 parameters, the prior fi(◊̨) and posterior p(◊̨|d) will be 15-dimensional

functions. If we wish to concentrate on the posterior distribution of a single parameter
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◊i œ ◊̨, we may marginalise over other parameters to obtain a marginalised posterior

p(◊i|d) =
⁄ Q

a
Ÿ

k ”=i

d◊k

R

b p(◊̨|d) = L(d|◊i)fi(◊i)
s

d◊̨ L(d|◊̨) fi(◊̨)
, (2.104)

where L(d|◊i) is the marginalised likelihood which we can express as

L(d|◊i) =
⁄ Q

a
Ÿ

k ”=i

d◊k

R

b fi(◊k)L(d|◊̨), (2.105)

where ◊k are the 14 parameters in ◊̨ which are not ◊i.

Waveform models for BBH coalescences, which are a main focus of this thesis, e�-

ciently give information about what the data d should look like given ◊̨ (they are used in

construction of µ(◊̨) in Eq. (2.103)). However, the inverse problem in Eq. (2.102) of con-

structing the posterior distribution is more computationally challenging due to the high

dimensionality of 15 BBH parameters to constrain. To tackle this problem, typically in

GW data analysis we make use of stochastic samplers, which generate posterior samples

{◊̨} drawn from the posterior distribution p(◊̨|d) such that the number of samples in some

small interval (◊̨, ◊̨ + �◊̨) is proportional to the posterior probability p(◊̨|d). Two of the

most commonly used algorithmic approaches to sampling for GW inference are nested

sampling [83] and Markov-chain Monte Carlo (MCMC) sampling [84, 85].

MCMC sampling can be visualised as a set of walkers taking a random walk through

the posterior distribution, where the probability of moving to a given point is the transition

probability of the Markov chain. Nested sampling is designed to compute the evidence

rather than directly draw samples from the posterior distribution, but produces posterior

probabilities as a byproduct. For our Bayesian inference in Chap. 6 we make use of

the nested sampler Dynesty [86] implemented within the Bilby [87] Bayesian inference

library. We also use the standard priors for gravitational wave data analysis, and refer

the reader to [87] for more details.

It is often useful to construct credible intervals from posterior samples as a measure

of the uncertainty, and we will make use of the symmetric 90% credible interval. The
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90% credible interval on a parameter ◊i is between ◊5% and ◊95%, where the probability

that ◊i lies between ◊5% and ◊95% is 0.9. Additionally, the probability that ◊i is less than

◊5% is 0.05, and the probability ◊i is less than ◊95% is 0.95. We also note here that the

maximum likelihood point (MaxL) or maximum posterior probability point (MaP) are

often used as the ’best-guess’ recovered parameter values. As their names suggest, the

MaxL point corresponds to the posterior sample values of ◊̨ for which the likelihood L(d|◊̨)

is maximised, and the MaP is the posterior sample values of ◊̨ which have the maximum

posterior probability p(◊̨|d).

As larger number of GW events from CBC mergers are detected, we may begin to think

of these as not only individual event detections, but in terms of a population of black holes

and neutron stars. Therefore we may use information from individual events, and the

posteriors on the parameters of the individual binary masses, spins and other parameters,

to constrain the distribution of these parameters across the population. This concept

of population inference is discussed in more detail in Chap. 6, and the mathematics of

hierarchical Bayesian inference, which is the tool we use to constrain the population

distribution using individual events, is introduced in Sec. 6.1

2.6 Summary

In this chapter, we have introduced Einstein’s field equations as our best description of

gravity in Sec. 2.1, deriving the expressions for GWs first in linearised gravity first in the

vacuum in Subec. 2.1.1, and then including source information in Subec. 2.1.2. We then

discussed astrophysical sources of GWs, introducing CBCs in Subsec. 2.2.1 and then de-

scribing how the parameters of the binary and their orientation relative to a ground-based

detector a�ect their phenomenology in Subsec. 2.2.2. We then briefly introduced some

other astrophysical sources of GWs in Subsec. 2.2.3. We then discussed the approaches

to modelling GW signals from BBH mergers, with the PN formalism for the weak field

in Subsec. 2.3.1 and the strong field and NR in Subsec. 2.3.2. We explicitly discussed
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the e�ect of BH spin, which forms a main focus of this thesis, both aligned spins in

Subsec. 2.4.1 and precession in Subsec. 2.4.2. Finally, we introduced the main concepts

behing Bayesian inference for parameter estimation of BBH sources in Sec. 2.5.

It is crucial to note that each likelihood evaluation in the sampling process requires the

evaluation of a gravitational waveform model, which takes as inputs the binary parameters

◊̨ and outputs a corresponding GW signal. The inference of the source parameters ◊̨ in

an unbiased way is therefore predicated on the availability of accurate theoretical models

of the emitted GW signal through inspiral, merger and ringdown (IMR). Additionally, on

average 106
≠ 108 such model evaluations are needed for parameter estimation of a single

GW event to obtain well-sampled posterior probability distributions, and so fast model

evaluation speeds are a necessary requirement.

Therefore, in Chapter 3 we will introduce waveform modelling and current approaches

in more detail, with a specific focus on waveform models which include precession.
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3. Waveform Modelling for Scientific

Interpretation of Gravitational Waves

This chapter includes portions of reformatted text from Ref. [40], "Accelerating Multi-

modal Gravitational Waveforms from Precessing Compact Binaries with Artificial Neural

Networks", by Thomas et al. Notably, the introduction to surrogate modelling in Sec. 3.5,

as well as small portions of text in Secs. 3.1 and 3.6.

As described in Sec. 2.5, the extraction of the binary parameters from CBC GW

signals, and therefore the potential to infer astrophysical information from these signals, is

heavily dependent upon theoretical and computational models of gravitational waveforms.

In Sec. 2.3.1 we saw how in the weak field, a PN approximation can be used to give the

equations for the motion of the binary, and therefore the gravitational wave signal, as

an expansion in powers of the characteristic binary velocity when it is su�ciently slow-

moving v/c π 1. Then in Sec. 2.3.2, we noted that in the strong field regime, the Einstein

equations must be solved numerically for the binary motion and GW emission. Therefore

in order to make e�cient use of GW data from CBCs, current waveform models combine

information from both NR and analytical approximations to model the full inspiral, merger

and ringdown.

The current generation of IMR waveform models can be broadly divided into three

families: phenomenological (phenom) models [71, 72]; E�ective-One-Body (EOB) models

[88]; and surrogate models [89], including NR surrogate models [90, 91]. In this chapter,

we give an overview of the main approach underlying each of these waveform families,

with particular attention paid to how the e�ects of spin precession are modelled. In

Sec. 3.1, we first describe how the full gravitational wave strain is generally decomposed

into the more easily-modelled components of waveform mode amplitudes and phases.

Then in Sec. 3.2, we describe in more detail how the e�ects of precession are imprinted

on the GW signals, and the approach used by current waveform models of decomposing
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the fully precessing signal into a simpler waveform in a time-dependent reference frame.

Finally, in Sec.s 3.4, 3.3,and 3.5, we briefly introduce the underlying frameworks behind

each of the three main waveform model families (phenom, EOB and surrogate models),

specifically mentioning the main features of these models in terms of speed, accuracy, and

their treatment of precession.

3.1 Multipole Waveform Decomposition

We define the complex strain h(t) as the combination of the gravitational wave polarisa-

tions:

h(t) = h+(t) ≠ ih◊(t), (3.1)

where the polarisations h+, h◊ are defined in Eq. 2.64. We note that this strain is distinct

from the detector strain of Eq. 2.64 as it does not include the detector beam pattern

coe�cients. For waveform modelling purposes these coe�cients are unimportant as they

encode only the relative orientation of the detector with respect to the source, rather than

the intrinsic physics of the binary. Similarly, it is convenient for modelling purposes to

decompose h(t) into GW modes in terms of spin-weighted spherical harmonics with spin

weight s = ≠2, which encode the directional dependence of the gravitational radiation

field. We introduce basis functions on the unit sphere:

Y ≠s
¸m (◊, „) = (≠1)s

Û
2¸ + 1

4fi
d¸

ms(◊)eim„, (3.2)

where s is the spin weight, d¸
ms denotes the small-d Wigner matrices [92] and (◊, „) are

the polar and azimuthal angles on the sphere. The explicit values for Y ≠2
¸m can be found in

App. D of Ref. [93], or equivalently App. A of Ref. [94]. With this basis decomposition,

our strain is now

h(t, ◊, „; ◊̨) =
Œÿ

¸=2

ÿ̧

m=≠¸

h¸m(t; ◊̨)Y ≠2
¸m (◊, „), (3.3)
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where we have explicitly noted the dependence of the waveform modes h¸m on the intrinsic

source binary parameters ◊̨ (see Eq. 2.69 for details of these intrinsic parameters), which

we note are distinct from the polar angle ◊. The individual GW modes h¸m may be

extracted by the surface integral

h¸m(t; ◊̨) =
⁄

d�h(t, ◊, „; ◊̨)Y ≠sú
¸m (◊, „), (3.4)

where d� = sin(◊)d◊d„ is the surface element on the unit sphere and ú denotes the

complex conjugate. As mentioned in Sec. 2.2.2, it is often useful to work in the Fourier

domain for GW data analysis, and so we define the Fourier transform of h¸m in accordance

with Eq. 2.73 as

h̃¸m(f ; ◊̨) =
⁄ Œ

≠Œ
h¸m(t; ◊̨)e2fiiftdt. (3.5)

Each of these modes may then be further decomposed into a mode amplitude A¸m and

phase „¸m, and so the GW modes given by

h¸m(t; ◊̨) = A¸m(t; ◊̨)e≠i„¸m(t;◊̨), (3.6)

or equivalently in the frequency domain,

h̃¸m(f ; ◊̨) = Ã¸m(f ; ◊̨)e≠i„̃¸m(f ;◊̨), (3.7)

where h¸m(t; ◊̨) and h̃¸m(f ; ◊̨) are related to each other through Eq. 3.5. Waveform mod-

els generally split the full signal into modes which are then modelled separately, and a

common approach for some models (notably Phenom and surrogate models) is to further

break these modes into amplitudes and phases. The modes where ¸ = 2 and |m| = ±2 are

the quadrupole modes, and are usually the dominant harmonics (ie. the largest amplitude

and so largest SNR). Additionally, for non-precessing systems the equatorial symmetry
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about the orbital plane of the binary implies that

h¸m(t) = hú
¸ ≠m(t). (3.8)

Therefore historically, waveform models tended to include only the dominant (2, 2)-mode,

and neglect the subdominant e�ect of higher (¸, m)-modes [265–268]. Fig. 3.1 shows the

amplitudes of the Fourier domain modes h̃¸m for a non-spinning, equal-mass binary of total

mass 50M§ as solid lines, with an inclination of ÿ = 0. The waveform modes were created

using the IMRPhenomXPHM waveform model [168] as implemented in LALSimulation. It

shows the hierarchy of mode power, with the (2, 2)-mode dominant in the inspiral, and

because there is no mass or spin asymmetry there is little power in the odd-m modes,

the (2, 1) and (3, 3)-modes. 1 In dashed lines we see the same binary with a mass ratio

of q = 2, and while the amplitudes of the even-m modes ((2, 2), (3, 2) and (4, 4)) remain

almost unchanged, the (2, 1) and (3, 3) have much more power, showing that the mass

asymmetry has excited these odd-m modes. We note that spin asymmetries will have a

similar e�ect.

Neglecting higher modes in waveform models can lead to significant loss of detection

rate [95–98] for high mass or high mass-ratio binaries, and systematic bias in the inferred

source parameters [95, 99–102]. One reason for this is that binaries with unequal masses

can have significant power in their higher modes, as seen in Fig. 3.1, but a further ex-

planation is as follows. We consider a scenario in which the line of sight of an observer

to a GW binary source lies along the orbital angular momentum L̂, so ◊ = 0 in Eq. 3.3.

In this case the strain observed in the interferometer will be predominantly comprised of

energy from the (2, 2)-mode, ie. Eq. 3.3 becomes

h(t, 0, „; ◊̨) ¥ h22(t, ◊̨)Y ≠2
22 (◊, „) = 1

8

Û
5
fi

(1 ≠ cos ◊)2 e≠2i„h22(t, ◊̨), (3.9)

1
Strictly mathematically there should be zero power in odd-m modes with no mass or spin asym-

metries, the small amount of power shown in these modes in Fig. 3.1 is as a result of waveform model

inaccuracies.
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Figure 3.1: Amplitudes in the frequency domain for the spherical harmonic modes
h̃¸,m(f) for a non-spinning BBH with total mass 50M§, inclination ÿ = 0, with a
mass ratio of q = 1 (solid lines), and q = 2 (dashed lines). The waveform modes
were created using the IMRPhenomXPHM waveform model [168] as implemented in
LALSimulation. In the inspiral, assuming a face-on (or face-o�) orientation, the
quadrupolar (2, 2)-mode contains the most power and is dominant for both binaries,
but the mass asymmetry excites the odd-m modes, which have more power for the
q = 2 binary.

and so the system is well approximated by only the quadrupolar mode. Because the (2, 2)-

mode is dominant for non-precessing binaries, it contains the most power and so binaries

in this configuration can be observed out to further distances [103, 104]: they are said

to be optimally-oriented. If instead the binary is orientated with some inclination ÿ with

respect to the line of sight of the observer, then the interferometer will not observe the

full power contained within the quadrupolar mode, and will record a signal where a larger

proportion of the power is contained within higher modes. In this case, the accuracy of

the approximation to neglect higher modes breaks down. Additionally, Ref. [105] demon-

strates that even for face-on binaries, where the signal contains minimal HM content,

including HMs in the model improves the inclination measurement, as face-o� inclina-

tions can be excluded. Therefore, by including higher modes within waveform models

and measuring their relative power, this allows for breaking of the degeneracy between

distance and inclination [44, 106–108]. An example of this is shown in Fig. 3.2, where the
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Figure 3.2: The posterior distribution for the luminosity distance dL and incli-
nation ◊JN for the gravitational wave event GW190412. The 90% credible regions
are shown, in blue for a waveform model that doe snot include either higher modes
or precession, SEOBNRv4_ROM [110]. The degeneracy can clearly be seen, and the
posterior support for ◊JN spans the whole range from 0 to fi. This degeneracy is
broken when higher modes are included using the model SEOBNRv4HM_ROM [111, 112]
in the dashed red contour, and is improved further when precession is included as
well with SEOBNRv4PHM [48] in yellow. Figure taken from Ref. [109].

posteriors for luminosity distance dL and inclination ◊JN are shown for a detected GW

signal GW190412 [109], which had a mass ratio of around q ≥ 3.8. We note that the

degeneracy between the inferred distance and inclination in the blue contour, when using

a model (SEOBNRv4_ROM [110]) which does not include either precession or the e�ect of

higher modes, is broken when higher modes are included in the dashed red contour (the

model used here is SEOBNRv4HM_ROM [111, 112]). This measurement is further improved

with the inclusion of precession using the model SEOBNRv4PHM [48], and the yellow contour

shrinks even further.

If the binary is precessing, as described in Sec. 2.4.2 this leads to tilting of the orbital

plane, which we can think of as a time-dependent binary orientation with respect to
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the observer’s line of sight. Similarly to a non-precessing binary which is non-optimally

oriented, there will be significant power in the higher modes observed in the GW signal.

Additionally, spin asymmetries can be very pronounced for precessing binaries, and so odd-

m modes are likely to contain significant power. This complexity of precessing waveforms

means they are able to break parameter degeneracies [16–19, 79–81, 113–117], allowing

us to more e�ectively extract astrophysical information, for which accurate modelling of

the e�ects of both precession and higher modes is critical. However, we note that this

added complexity will necessarily lead to more complex and therefore slower waveform

models, and so these competing e�ects must be balanced to achieve both complete and

timely inference. We discuss in more detail strategies to speed up precessing waveform

models, namely using surrogate models and neural networks, in Chapter 5.

3.2 Modelling Precession

In this section we summarise the approach and assumptions used to model precessional

e�ects in full IMR waveform models. For a more detailed discussion of precessing phe-

nomenology we refer the reader to Refs. [118, 119], Refs. [14, 15] for a comprehensive

treatment of precessing binaries within the PN framework, and to Ref. [120] for a recent

analysis of precessing modelling assumptions and their accuracy impact.

In Sec. 2.4.2 we describe how the e�ects of precession create richer morphology and

structure of gravitational waveforms, complicating e�orts to model such signals. We also

describe the separation of the di�erent orbital and precessional timescales in the inspiral,

which allows us to define approximate closed-form solutions of the post-Newtonian (PN)

precession equations in the inspiral [121, 122]. This separation of timescales motivates that

the dynamics of the binary orbit and the precession dynamics can also be approximately

separated in the inspiral. It was first suggested in Ref. [14] that the total phase of a

precessing signal could be described by modulation of an underlying carrier phase. In a

non-precessing binary the time derivative of the orbital phase „̇ is equal to the angular
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velocity of the two bodies in the orbital plane �. However, in a precessing binary where

the orbital plane becomes time-dependent this no longer holds, and so we can define a

carrier phase given by

„C(t) =
⁄ t

t0

�(tÕ)dtÕ, (3.10)

where t0 is some (arbitrary) initial time. In this construction, the precessing GW strain

h(t) can then be modelled as

h(t) = �(t) hC(t), (3.11)

where hC(t) is a "carrier signal" of a non-spinning binary with phase specified by Eq. 3.10,

and �(t) is a factor which represents the precession-induced modulations of the GW

amplitude and phase. To improve agreement between true precessing waveforms and

these artificially modulated constructions, Ref. [123] reformulated �(t) to better capture

the precession-induced modulations, though this came at the cost of introducing several

non-physical parameters which could be shown to mimic detector noise and decrease

search sensitivity [124].

A key breakthrough in modelling precession e�ects came in Ref. [173] with the realisa-

tion that a fully precessing signal may be greatly simplified by a coordinate transform into

a time-dependent reference frame which approximately tracks the precession of the orbital

plane. In this non-inertial frame, called the coprecessing frame, the mode hierarchy of

a non-precessing but aligned-spin binary is approximately restored, which motivates the

definition of a mapping between a fully precessing binary characterised by seven intrinsic

parameters, and a corresponding appropriate aligned-spin binary which is fully described

by three parameters (see Eq. 2.69) [128]. Therefore the complex problem of modelling a

fully precessing waveform is broken down into two more manageable pieces: (i) modelling

a simplified waveform in a coordinate frame which tracks the precession of the orbital

plane; and (ii) modelling the time-dependent rotation that transforms the signal in this
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coordinate frame back to an inertial frame. We can express this quantitatively as

hP
¸m(t) ƒ

ÿ̧

mÕ=≠¸

R¸mmÕ(t)hcoprec
¸mÕ (t), (3.12)

where hP
¸ is the fully precessing signal in an inertial frame, hcoprec

¸mÕ (t) is the simplified

waveform, and R¸mmÕ(t) is the time-dependent rotation from the coprecessing frame to

the inertial frame.

A common way to represent this rotation in waveform models is to use Euler angles,

{–(t), —(t), “(t)}, which represent the time-dependent rotation from a frame in which the

z-axis is aligned with the instantaneous orbital angular momentum L̂(t) (henceforth called

the L-frame), and an inertial frame (the J-frame) in which the zÕ-axis is aligned with the

total angular momentum Ĵ evaluated at some reference time, though as described in

Sec. 2.4.2 the direction of J remains approximately fixed throughout the binary inspiral

for simple precession, which makes up the vast majority of precessional morphologies

observable in the current ground-based frequency sensitivity range. The rotation described

by these Euler angles can be seen in Fig. 3.3, where the L-frame is defined such that the x

and y-vectors lie within the orbital plane, the x-axis points from the smaller black hole m2

to the larger one m1, and y points such that {x̂, ŷ, ẑ} forms a right-handed orthonormal

basis. The angle “ is defined by the minimal rotation condition [123, 125] “̇ = ≠–̇ cos — for

uniqueness. We note that this choice of inertial frame is not unique, for example recent

EOB models [48, 126] utilise an inertial frame in which the zÕ-axis is instead aligned

with the Newtonian orbital angular momentum LN at some reference time, but the basic

formalism remains the same. The evolution of these angles is usually computed using

semianalytic methods for current precessing waveform models [48, 127, 133, 165, 168,

269–271], which we describe in more detail for each waveform family.

As an alternative to Euler angles, quaternions may also be used to represent the time-

dependent rotation. If we consider a rotation of angle ◊ about a unit axis [x, y, z], then

this may be described by the quaternion q̂ = [cos(◊/2), x sin(◊/2), y sin(◊/2), z sin(◊/2)].
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Figure 3.3: Definition of the inertial J-frame and the Euler angles. The three
Euler angles –, — and “ define the rotation from the L-frame where the z-component
is parallel to the orbital angular momentum of the binary ẑ = L̂(t0), to the J-frame
where it is parallel to the total angular momentum ẑÕ = Ĵ(t0) at the start time
of the waveform t0. The angle “ is defined by the minimal rotation condition,
“̇ = ≠–̇ cos — [123, 125].

Notably, the precessing surrogate NRSur7dq4 [160] uses quaternions to denote the time-

dependent rotation from the coprecessing frame to the inertial frame, as described in more

detail in Subsec. 4.2.1.

The waveforms in this coprecessing frame resemble those from spin-aligned binaries

[128, 129], and so a common approximation in many of the current generation of waveform

models is to set

hcoprec
¸m (t; q, {‰1Î, ‰̨1‹}, {‰2Î, ‰̨2‹}) = hAS

¸m(t; q, ‰1Î, ‰2Î) (3.13)

in the RHS of Eq. 3.12, thus "twisting up" an aligned spin waveform, which depends only

on the spin components parallel to the orbital angular momentum 2, to produce a fully

precessing one, which depends on all six spin components. We note, however, that this

2
We also note that as the presence of precession will modify the spin of the remnant BH, this waveform

approximation will also depend on the final spin ‰̨remmant.
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approximation introduces significant systematic errors due to the neglect of spin-induced

mode asymmetries in precessing systems [120, 130], because in a precessing binary the

equatorial symmetry of the system is broken and so Eq. 3.8 no longer holds [131].

Therefore, with this simplification we are left with the problem of modelling the pre-

cession dynamics, which is complicated by the high dimensionality of precessing systems

as it depends on all six spin components. Similarly to the parameter ‰e� (Eq. 2.93) de-

scribed in Subsec. 2.4.1 to model the inspiral rate, it is useful to employ strategies of

dimensional reduction to model the e�ects of precession with fewer degrees of freedom.

Motivated by PN theory, Ref. [174] introduced an e�ective precession spin ‰p defined as

Sp := max(A1S1‹, A2S2‹), (3.14)

‰p := Sp

A1m2
1
, (3.15)

where A1 = 2 + 3/2q, A2 = 2 + 3q/2, and Si‹ = ||S̨i‹|| such that the Kerr limit ‰i Æ

1 is obeyed. It is motivated by the observation that over the course of the inspiral,

the dimensional in-plane spin vectors S̨1‹ and S̨2‹ will rotate at di�erent rates, and

so the magnitude of their vector sum will oscillate between the sum and di�erence of

their magnitudes. Therefore ‰p is constructed such that it captures the average amount

of precession exhibited by a generically precessing system over many precession cycles

defined at some reference time tref during the inspiral. We note that ‰p will assume a

(slightly) di�erent value depending on tref but this time (frequency) dependence can be

mitigated through the inclusion of additional precession-averaged spin e�ects [132]. An

alternative e�ective parameterisation based on the total spin can be found in [133]. The

e�ective precession spin ‰p is regularly used to make statements about the measurement of

precession at a certain reference frequency (time) in GW inference, see e.g. [19, 134, 254],

and has been successfully utilised in some Phenom waveform models [127, 269, 272] to

model the e�ects of precession on waveforms, as described in more detail in Subsec. 3.4.4.

In the remainder of this chapter, we briefly outline the modelling framework for each
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of the three main IMR waveform model families: EOB in Sec. 3.3; Phenom models in

Sec. 3.4; and reduced-order surrogate models in Sec. 3.5. We pay particular attention to

how they include the e�ects of precession and higher multipoles.

3.3 E�ective-One-Body Models

A semi-analytic approach to waveform modelling is using the EOB framework [88, 273–

276], which combines information from analytical methods including PN theory with NR

simulations. In this formalism, the two-body dynamics of a compact binary is mapped

onto the dynamics of a test particle moving in an e�ective metric of deformed Kerr

spacetime. EOB waveform models are made up of three keys ingredients: (i) the EOB

Hamiltonian, (ii) the GW modes, and (iii) the radiation-reaction (RR) force. We will look

at each of these pieces in more detail, before describing how they fit together to produce

accurate waveforms for CBCs, including the e�ects of precession.

3.3.1 E�ective-One-Body Hamiltonian

The first key piece of the EOB approach is the EOB Hamiltonian, which is defined by the

energy map:

HEOB = M

ı̂ıÙ1 + 2‹

A
He�

µ
≠ 1

B

, (3.16)

where M is the binary’s total mass as defined in Eq. 2.50, and ‹ is the symmetric mass

ratio of Eq. 2.48. The e�ective Hamiltonian He� describes the geodesic motion of a test

particle of mass µ, where µ is the reduced mass of the binary as defined in Eq. 2.49, in a

deformed Kerr spacetime of mass equal to M . We obtain the form of this deformation,

which has deformation parameter ‹, by requiring that at each PN order, the PN-expanded

EOB Hamiltonian agrees with a PN Hamiltonian for BBHs after a canonical transforma-

tion, as detailed in Ref. [88]. In the the limit of ‹ æ 0, the e�ective dynamics reduces to

that of a test particle on a generic orbit around a Kerr black hole. We note that Eq. 3.16

only describes the conservative dynamics of the system, with no damping due to gravita-
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tional radiation, and so in this limit the Kerr deformation will be static and spherically

symmetric.

There are two possible strategies to incorporate the e�ects of black hole spin into

this formalism, the first of which is to map the spinning dynamics to a test mass in a

deformed Kerr spacetime, then including spin contribution corrections into the e�ective

Hamiltonian. The second approach is to map to a test spin in deformed Kerr spacetime,

which is a more generic technique as it includes resummed spin-orbit couplings at all PN

orders in the test-body limit by construction. However, this generality makes it more

complicated than the test mass approach, and so while we note that previous generations

of spinning EOB waveform models [48, 110, 111, 126, 166, 267, 268], have used the test

spin Hamiltonian method [135, 136], the current state-of-the-art models use both the test

mass approach as in Ref. [277], and the test spin approach as in Ref. [278].

3.3.2 Gravitational Waveform Modes

The second key piece to include is the GW modes, which are built upon a factorised

resummation of PN modes in the inspiral [137–139]. This resummation extends the va-

lidity of the PN approximation to higher velocities, and allows for the use of the EOB

mapping approximation up until plunge [273]. These modes in the inspiral-plunge regime

are expressed in the form

hinsp-plunge
¸m = h¸mN¸m, (3.17)

where N¸m are non-quasi circular (NQC) corrections, which allow for better agreement

to NR in the late inspiral-plunge stage of the binary dynamics, where the orbit of the

evolution is no longer adiabatic. The resummed, factorised PN expressions for h¸m are

currently only derived for non-precessing binaries, and depend on the projections ‰iÎ

of the spins along L. Therefore for precessing binaries where L̂ is time-dependent, the

EOB dynamics for L̂ are used to compute projections ‰iÎ(t) which are also evolving. In

order to obtain the fully precessing waveform modes hP
¸m, the factorised, resummed non-
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precessing modes h¸m which have been evaluated along the EOB precessing dynamics are

then "twisted up" into an observer’s inertial frame, using Eq. 3.12, using the precessing

EOB dynamics.

3.3.3 Radiation-Reaction Force

The third key component of the EOB formalism is the RR force F , which describes the

energy and angular momentum loss due to the emission of GWs. This can be expressed

in terms of the GW energy flux in terms of the GW modes as

F = �
16fi

p̨---L̨
---

¸maxÿ

¸=2

ÿ̧

m=≠¸

m2
|dLh¸m| , (3.18)

where � = |r̨ ◊ ˙̨r|/|r̨|
2 is the angular orbital frequency, r̨ is the black hole separation, p̨

is the canonically conjugate momentum, and dL is the luminosity distance to the source.

We note that these h¸m are only the factorised, resummed PN modes and not the full

inspiral-plunge modes from Eq. 3.17, as these modes do not include NQC corrections, nor

do they include the twisting up into an observer’s inertial frame for precessing binaries.

3.3.4 Full Formalism

Putting these three key pieces together, the equations of motion in the inspiral-plunge for

a BBH with arbitrarily-orientated spins are [276]

˙̨r = ˆHEOB

ˆp̨
, (3.19)

˙̨p = ≠
ˆHEOB

ˆr̨
+ F , (3.20)

˙̨
Si = ˆHEOB

ˆS̨i

◊ S̨i + ˙̨
SRR

i , (3.21)

where HEOB is the EOB Hamiltonian, and F is the RR force. We note that the RR

contribution to the spin-evolution equations (Eq. 3.21) starts at 5.5PN spin-spin order,

and can thus be neglected. The model then solves for the EOB dynamics by evolving
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these equations in time, thus extracting the resulting GW modes of Eq. 3.17. EOB models

are therefore inherently constructed in the time domain, and are computationally more

expensive than Phenom models.

The formalism as described thus far is only valid when the BBH is composed of

two individual objects, ie. up to merger. Therefore EOB waveforms in the merger-

ringdown portion are constructed from functional fits to NR, in a similar spirit to the

Phenom approach described below in Subsecs. 3.4.1 and 3.4.2. We also mention that

the Hamiltonian mapping described for the inspiral-plunge in Subsec. 3.3.1 is formulated

such that there are free calibration parameters which are fitted to NR waveforms. As

an example, in recent EOB models [110], the calibration parameters are used to describe

the shape of the EOB radial potential, the time delay between peak orbital frequency

and peak radiation, as well as the strength of spin-orbit and spin-spin couplings in the

e�ective Hamiltonian. This NR calibration further increases the accuracy of EOB models

especially in the aligned spin sector, though we note that currently no EOB model is

calibrated to precessing NR.

There currently exists two distinct EOB waveform model families, namely SEOB and

TEOB [279–281], which di�er in their derivation of the Kerr deformation in the conservative

Hamiltonian, as well as treatment of spin corrections (for a recent comparison we refer

the reader to Ref. [140]). The most recent generation of SEOB model, SEOBNRv5, uses all

information up to 4PN and partial 5PN results in the non-spinning part of the Hamilto-

nian, and precessing spin contributions up to 4PN as derived in [141]. Both EOB families

naturally incorporate precession and higher modes into their Hamiltonian prescriptions,

and both make use of the twisting up procedure for the full inspiral-plunge modes as

described in Subsec. 3.3.2.
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3.4 Phenomenological Models

Another semi-analytic method to waveform modelling for a full IMR signal is the phe-

nomenological approach [71, 72]. Phenom models [105, 127, 165, 167, 168, 265, 266, 269,

270, 272, 282–285] are among the most widely used of waveform models for GW data

analysis, as they are computationally extremely e�cient. They have been used as part

of all GW detections to date, and have been used for data analysis in gravitational wave

catalogs such as Refs. [4, 5, 7, 45, 134, 218, 255–257]. They are usually formulated in the

frequency domain, and so do not require Fourier transforms for likelihood evaluations,

though inherently time-domain Phenom waveform models are presented in Refs. [270,

284, 285]. Phenom models rely on piece-wise closed-form ansatzes to approximate the

form of di�erent frequency regions of the waveform, which are usually defined as the in-

spiral, ringdown, and an intermediate region encompassing the complex physics of the

late inspiral and merger. Therefore, the first step is to define appropriate, physically-

motivated expressions in each region, which are then fit to a set of calibration waveforms

to produce a set of phenomenological coe�cients. The coe�cients are physically not very

meaningful on their own, so a second step is to then map them across the parameter

space of BBHs using fits. Finally, the models for the three regions are pieced together,

ensuring smoothness of the waveform, to produce a final model for the full IMR signal.

Unlike in the EOB approach, Phenom models which are inherently frequency domain do

not solve any equations of motion of the binary, 3 which makes them significantly cheaper

to evaluate but also means that they do not provide the binary dynamics as part of the

solution. In the remainder of this section, we briefly outline in more detail the three steps

in the Phenom modelling approach in Subsecs. 3.4.1, 3.4.2, and 3.4.3, before describing

how the current generation of Phenom models incorporate the e�ects of precession and

higher modes in Subsec. 3.4.4. For a more detailed discussion of the phenomenology of

IMR waveforms and how they are modelled in the Phenom family, we refer the reader to,
3
The time domain precessing Phenom models PhenomTP and PhenomTPHM do involve numerical inte-

gration of the orbit averaged spin evolution equations, which makes them slower than other precessing

Phenom models which are inherently in the frequency domain, but these models do not use the SPA.
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eg. Ref. [265].

3.4.1 Closed-Form Expressions and Phenomenological Fits

As we have already mentioned, Phenom models rely on the assumption that if a non-

precessing full IMR waveform is broken down into smaller pieces across the full range of

frequencies, then each piece can be approximately modelled based on closed-form analytic

expressions. The first of these three regions is the inspiral, in which it is natural to model

the signal using the PN framework as an expansion in frequency f , where Mfif = (v/c)3.

The most recent generation of Phenom models, PhenomX [168, 282, 283], bases this inspiral

ansatz on the TaylorF2 approximant [58, 142, 143, 275], which provides closed-form

expressions for the amplitude and phase of the waveform for quasicircular inspirals in the

frequency domain using the SPA as described in Sec. 2.3.1. These closed-form expressions

are then augmented with higher order, pseudo-PN terms to model behaviour at higher

order where the PN coe�cients are as yet unknown. More explicitly, the expressions for

the inspiral amplitude and phase for the quadrupolar mode are given as in Ref. [282] by

Ainspiral = A0

A 6ÿ

i=0
Ai (fif)i/3 +

3ÿ

i=1
fli (fif)(6i+1)/3

B

, (3.22)

„inspiral = „TaylorF2 + 1
÷

A

‡0 +
5ÿ

i=1

3‡i

2 + i
(Mf)(2+i)/3

B

, (3.23)

where the first term in Eq. 3.22 and „TaylorF2 are the analytic amplitude and phase ex-

pressions given by the TaylorF2 approximant, and the coe�cients Ai are known. The

quantity A0 factors out the leading order frequency behaviour of the PN expansion of

the amplitude, given by A0 =
Ò

2÷
3fi1/3 f≠7/6. Therefore the pseudo-PN coe�cients fli, ‡i

capture the higher order behaviour, which makes a total 9 phenomenological coe�cients

for the inspiral region. Analogously, in the ringdown region the ansätze for the ampli-

tude and phase derivative are based on Lorentzian functions, as in this region we expect

both the amplitude and derivative of the accumulating phase to decay exponentially in
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the time domain and so the Lorentzian gives the Fourier transform of this behaviour. In

the intermediate regime, the amplitude is based on an inverse polynomial in powers of

frequency, and the phase derivative expression is a mixture of polynomial terms and a

Lorentzian function, to smoothly match the phase in both the inspiral and ringdown. Full

details of these ansätze are given in Ref. [282].

Having defined the closed-form expressions for each region and their corresponding

phenomenological coe�cients, these expression are then fitted to a set of calibration wave-

forms to obtain values for the coe�cients. The PhenomX generation of models uses wave-

forms which are a hybridisation of SEOBNRv4 in the inspiral, matched to NR waveforms

at higher frequencies in the late inspiral, merger and ringdown. The hybridisation is per-

formed over a frequency window to ensure smoothness. This calibration set also includes

extreme mass ratio waveforms where q œ {200, 1000}, where the late inspiral, merger and

ringdown uses numerical solutions of the perturbative Teukolsky equation [144], and the

inspiral uses SEOBNRv4 as before.

Fitting the phenomenological coe�cients to the hybrid waveforms is performed by

constructing fits for the values of the amplitudes and phases or at specific frequency

nodes, known as collocation points. This provides a system of linear equations for the

coe�cients which can then be solved to obtain their values.

In previous iterations of Phenom waveform models [105], non-precessing higher modes

were modelled by an approximate frequency mapping between the quadrupolar mode

and higher modes. The result of this is that the individual modes do not need to be

modelled separately, rather the quadrupolar mode can be modelled and then transformed

appropriately to represent the higher modes. To increase accuracy, the most recent model,

PhenomXHM, models each of the modes separately, and so the method above of defining

an ansatz and fitting the phenomenological coe�cients is performed separately for each

mode, amplitude and phase, in each of the three regions.
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3.4.2 Modelling Across Parameter Space

Having performed the previous step of fitting for the phenomenological coe�cients, these

now need to be mapped to the more physically relevant parameters which describe binary

black hole mergers. This step is required because any waveform model needs to be able

to take in BBH parameters as input, and output a corresponding waveform in order to

useful for inference. This is done in PhenomX using a hierarchical fitting procedure as

described in Ref. [145], where first the phenomenological coe�cients are fitted in ÷ across

the one-dimensional subspace of non-spinning binaries. They are then also fitted across

the subspace of equal mass, equal spin binaries, and these fits are then combined to

produce a 2D ansatz in symmetric mass ratio and spin. Finally, the fit is augmented with

information from the spin asymmetries if the binary, to produce a full 3D fit across the

parameters for a non-precessing binary.

3.4.3 Full Inspiral-Merger-Ringdown Waveforms

The final stage to generate full non-precessing IMR waveforms from a Phenom model is

to glue together the piece-wise closed-form solutions from each of the three regions, to

produce a single smooth waveform. This is done in PhenomXAS within some frequency

matching windows, set relative to the minimum energy circular orbit (MECO), ISCO,

and ringdown frequencies to ensure a smooth output waveform.

3.4.4 Including Precession in Phenom Waveforms

The prescription for Phenom waveform modelling as described thus far has been solely

based on spin-aligned waveforms. In this section, we outline how Phenom models incor-

porate the e�ects of precession. Phenom models, like EOB models, use the approximation

of Eq. 3.12 that a non-precessing waveform can be twisted up using time-dependent Euler

angles to produce a precessing waveform. In Phenom models, the approximation is made

that the simplified waveforms in the coprecessing frame are approximately equivalent to
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spin-aligned waveforms. Therefore the final step to producing fully precessing Phenom

waveforms is to have a model for the Euler angles, because unlike EOB models, Phenom

models do not solve for the binary dynamics and so these angles need to be modelled sep-

arately. In the most recent generation of precessing Phenom model, PhenomXPHM, there

are two possible methods used to model the Euler angles. The first approach uses the

next-to-next-to-leading order (NNLO) PN method, as also used in a previous generation

of precessing Phenom model PhenomPv2 [127, 165]. In this approach, the secondary spin

is set to zero S̨2 = 0 and thus spin couplings are limited to spin-orbit. The evolution

of the Euler angles is expressed in terms of the e�ective precession spin ‰p [146, 147],

which is presumed to be placed upon the primary black hole in this prescription. The

second approach, which is the default behaviour for the model, is based upon the applica-

tion of multiple scale analysis to the PN equations of motion [76, 121, 122, 148–150]. In

this framework, the natural separation of timescales between the shorter orbital, longer

precessional timescale, and even longer radiation-reaction (or inspiral) timescale, allows

for a perturbative expansion approach to solve the precession equations and produce

frequency-domain solutions which contain both spin-orbit and spin-spin e�ects, ie. spin

information from both black holes. These Euler angles solutions are given by a PN ex-

pansion with an additional MSA correction. It is important to note that by construction,

non-spinning and spin-aligned Phenom waveforms are calibrated to numerical relativity,

as at their core they are phenomenological fits to NR and NR hybrids. This is no longer

true when precession is introduced, as the approximation that precessing waveforms can

be built from spin-aligned waveforms twisted up means that precessing NR is not required

in their construction, reducing their accuracy in the precessing sector. Until recently, no

semi-analytic waveform models (Phenom or EOB) were calibrated to NR in the precessing

sector due in large part to the high dimensionality of precessing binaries, which has lead

to waveforms systematics impeding inference in areas of parameter space where there may

be large amounts of precession [38, 218]. The first steps towards precessing NR calibration

have been made recently in Ref. [272], in which the aligned-spin Phenom model PhenomD
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was tuned to the quadupolar modes of single-spin precessing NR through a simple ‰p

parameterisation. However, as previously mentioned in Subsec. 3.2 ‰p alone does not re-

produce the higher modes of precessing waveforms, and so a more nuanced strategy may

be needed for further development in this area. We discuss this in more detail in Sec. 4.1.

3.5 Surrogate Models

The third and final waveform modelling family we will discuss is that of surrogate wave-

form models. A surrogate model is a waveform model which is built upon an underlying,

slower model, over some predefined parameter space of intrinsic binary parameters. There-

fore, their range of validity in parameter space is limited to the region over which they

are constructed, the training space, plus an extrapolation region over which the model

has been tested an shown to be accurate to within some tolerance. This is in contrast to

semianalytic models which have a wide range of parameter space validity are calibrated

to NR at high mass ratios and spins. Surrogate models use reduced-order modelling tech-

niques [89, 91, 151, 152] to create a model which is very accurate to the underlying (more

expensive) model over that parameter space, but produces waveforms at a fraction of the

computational cost. Recent examples of surrogate models for waveforms from coalescing

compact binaries include NR [89, 91, 160, 163, 286] and NR-hybrid surrogate models [161],

surrogates for the aligned-spin EOB model SEOBNRv4 [110] using artificial neural networks

[153, 154] a machine learning emulation of a di�erent EOB model, TEOBResumS [155, 156],

as well as other dimensional reduction techniques [157] to greatly reduce the cost of as-

trophysical inference with these models.

In the following, we will provide a brief outline of the main steps for building a surro-

gate model. For a more complete explanation we refer the reader to e.g. [152].

The process of building a surrogate model may begin with building a reduced basis,

which enables us to represent any arbitrary function, e.g. a time-domain waveform h(t, ⁄̨)

with intrinsic parameters ⁄̨, within the discrete training space TM = {⁄̨i}
M
i=1 ™ T =
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{⁄̨i}
Œ
i=1 as a linear combination of an n-dimensional orthonormal basis {êi(t)}n

i=1 and

projection coe�cients {cn(⁄̨)}n
i=1,

h(t, ⁄̨) ¥

nÿ

i=1
ci(⁄̨)êi(t), (3.24)

with n Æ M . The reduced basis is constructed recursively using a greedy algorithm [151,

152] until all waveforms in the training space TM are represented by the basis to within a

certain tolerance ‡, which is related to the representation error ‘ by

max ‘ = max
....h(t; ⁄̨) ≠

nÿ

i=1
ci(⁄̨)êi(t)

....
2

Æ ‡, (3.25)

where ||ú || denotes the L2-norm, which we compute via the Chebyshev-Gauss quadrature

rule. To achieve this, at each step the waveform with the largest representation error

using the current basis is chosen, orthogonalised with respect to all current basis elements,

and normalised, before being added to the basis as the next basis element. The greedy

algorithm stops once Eq (3.25) is fulfilled or if the waveform with the largest representation

error is already a basis element. The latter is an indication that the training space

TM is sampled too coarsely to achieve the desired accuracy ‡. If the discrete training

space is sampled su�ciently densely, then the reduced basis representation allows us to

approximate any waveform in the entire parameter space T .

After the basis has been constructed, we proceed to build an empirical interpolant

(EI) using the empirical interpolation method [158, 159], which allows us to reconstruct

each waveform h(t; ⁄̨) for ⁄̨ œ TM to within a high accuracy, only using information at

certain (sparse) time nodes {Ti}
n
i=1. These carefully selected empirical times or nodes are

determined exclusively by the reduced basis waveforms, and the number of time nodes
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will be equal to the number of waveforms within the reduced basis:

EI[h](t; ⁄̨) =
nÿ

j=1
Bj(t)h(Tj; ⁄̨), (3.26)

=
nÿ

i=1

nÿ

j=1
êi(t)(V ≠1)ijh(Tj; ⁄̨), (3.27)

where (V )ij = (êi(Tj)) is the interpolation matrix.

The final step for building a surrogate model is to perform a parameter space fit which

allows us to predict waveforms at the empirical times {Ti}
n
i=1 for arbitrary parameters

⁄̨ œ T based on the greedy points {⁄̨i}
n
i=1 selected to construct the reduced basis. This

requires us to fit h(t; ⁄̨) across the parameter space at each empirical node such that

h(Ti; ⁄̨) ¥ Ai(⁄̨)ei„i(⁄̨), (3.28)

where Ai and „i are the amplitude and phase at the i-th empirical node. The 2n-functions

that determine the parameter space fits can be determined by di�erent means, for example

via traditional fitting functions such as splines or polynomials [89, 151, 160] or by using

machine learning algorithms such artificial neural networks [40, 153, 154] or Gaussian

processes [161–164]. Once the fitting coe�cients Ai(⁄̨) and „i(⁄̨) have been determined,

the final surrogate model for a waveform h(t; ⁄̨) is then given by

hS(t; ⁄̨) ©

nÿ

i=1

nÿ

j=1
(V ≠1)jiêj(t)Ai(⁄̨)e≠i„i(⁄̨). (3.29)

We note that this prescription applies to generic functions up to the parameter space fits

Eq. (3.28), whose RHS decomposition depends on the function that is being modelled.

3.6 Summary

In this chapter, we have provided a brief introduction to waveform modelling, including

the mode decomposition commonly used in waveform models, modelling of precession, and
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the main concepts behind each of the three IMR waveform model families. In Sec. 3.1,

we described how the waveform strain is decomposed into spherical harmonic modes for

modelling purposes, and then in Sec. 3.2 we outlined the key assumptions and approaches

for modelling precessional e�ects in gravitational waveforms. In Secs. 3.3, 3.4, and 3.5

we then discussed the main ingredients of each of the three IMR waveform model fami-

lies: EOB, Phenom and surrogate models respectively. Recent years have seen significant

improvements in the modeling of the complete IMR signal of compact binaries with the

inclusion of spin-induced precession e�ects [165, 166] as well as higher-order harmon-

ics [48, 167, 168]. While the state-of-the-art waveform models are su�ciently accurate

for current observations, where the uncertainty in the measurement of the BH properties

is dominated by the statistical uncertainty due to detector noise, future upgrades to the

current interferometer network [169] and third-generation ground-based detectors such as

the Einstein Telescope [219, 224, 287] and Cosmic Explorer [169, 225, 288], will operate

at unprecedented sensitivities, shifting focus onto systematic modeling errors as the dom-

inant source of error [170]. The development of evermore accurate models by increasing

their physics content is of paramount importance, including the accurate and e�cient

modelling of e�ects of precession. Therefore, in the next chapter we discuss calibration

of semianalytic waveform models to precessing NR to improve their accuracy, and the

need for a dimensional reduction of precessing systems to achieve meaningful calibration

of precessing waveforms including higher modes.
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Modelling Multimodal Gravitational

Waveforms in the Strong-Field Regime

This chapter is a reformatted version of work presented in Ref. [39], "New E�ective Preces-

sion Spin for modelling Multimodal Gravitational Waveforms in the Strong-Field Regime",

published in Phys. Rev. D 103.83022, for which L. M. Thomas is lead author. The concept

for this paper was proposed by P. Schmidt and G. Pratten as a precessing spin dimen-

sional reduction strategy towards calibrating semianalytic precessing waveform models

to precessing NR. L. M. Thomas performed the initial investigations for this work to

obtain a functional form for ‰‹, with guidance from P. Schmidt and G. Pratten. She

also obtained the mode energy thresholds from odd m-modes and sampled the binary

parameters for the mismatches, again with input from P. Schmidt and G. Pratten. L. M.

Thomas wrote the code for and performed the mode and strain mismatch analyses, and

the interpretation of these mismatch results across parameter space was a collaborative

e�ort with L. M. Thomas, P. Schmidt and G. Pratten, including the observation that

the improved performance of ‰p is due to better replication of the binary dynamics as

opposed to the precession cone opening angle. Therefore, P. Schmidt proposed the idea

to perform a mismatch study for the quaternion components and analysis of the merger

remnant properties, which were coded up and performed by L. M. Thomas. The final

discussion and interpretation of our results was a joint e�ort between L. M. Thomas, P.

Schmidt and G. Pratten. L. M. Thomas produced all the Figs. presented here, and wrote

the majority of the text with input from P. Schmidt and G. Pratten.

In Chapter 3, we introduced the main modelling concepts behind each of the three

main IMR waveform families currently used for GW data analysis. We outlined how

semi-analytic models, both EOB models in Sec. 3.3 and phenom models in Sec. 3.4, are

constructed for spin-aligned binaries including calibration to NR in the strong-field to
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increase their accuracy. These aligned-spin waveforms are then twisted up using time-

dependent rotations to replicate the precessing motion of the orbital plane, and produce

a fully precessing waveform. However semi-analytic precessing models do not generally

include calibration to precessing NR, in large part due to the high dimensionality of

precessing binaries, as described in Sec. 3.2.

In this chapter, we introduce a new e�ective precession spin ‰̨‹, which reproduces

the quadrupolar and higher mode behaviour of fully precessing binaries with fewer spin

components than the full six spin degrees of freedom, e�ectively reducing the dimension-

ality of these systems and providing a potential pathway for meaningful calibration to

precessing higher mode NR. In Sec. 4.1 we motivate the need for a new e�ective dimen-

sional reduction of precessing binaries, which includes higher mode behaviour, and then

in Sec. 4.1.1 we introduce our new e�ective precession spin vector ‰̨‹. We describe the

methodology used to assess the e�cacy of this dimensional reduction in Sec. 4.2. In Sec.

4.3 we present our results and subsequently discuss the accuracy and caveats of this spin

mapping in Sec. 4.4.

4.1 Calibrating Waveform Models to Precessing Nu-

merical Relativity

Semi-analytic models as described in Chapter 3 are constructed to produce gravitational

waveforms much faster than by numerically solving the Einstein field equations, using

analytic approximations. However, to increase the accuracy of these approximations,

these models are tuned to numerical relativity to ensure their agreement across BBH

parameter space. For semi-analytic models which do not include the e�ects of precession,

this is now standard practice, with the most recent generation of non-precessing models

calibrated to NR across a wide range of mass ratios and aligned spin configurations, see

eg. Refs. [277, 283].

Fully tuning aligned-spin models to NR requires calibration in only 3 dimensions:
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the mass ratio, and two dimensions of spin, which may correspond to the aligned-spin

components ‰1z, ‰2z or e�ective combinations thereof. As an example, we consider the

recent aligned-spin phenom model PhenomXHM , which tunes model parameters to NR

across each of the three intrinsic spin-aligned BBH dimensions of mass ratio and spins.

These dimensions are explicitly parameterised by the symmetric mass ratio ÷, a one-

dimensional spin parameter Ŝ whose definition is a function of the e�ective aligned spin ‰e�

in the inspiral, and spin asymmetry �‰ = ‰1 ≠ ‰2. PhenomXHM uses a hierarchical fitting

technique to calibrate the model parameters to NR across each of these dimensions, for a

total of NR 652 simulations. The distribution of these simulations across the parameter

space can be seen in Fig. 4.1, though naively if we were to approximate the number of

simulations needed for calibration across each dimension to be equal, then the number

of NR simulations needed per intrinsic dimension is 3
Ô

652 ≥ 10. We also note that

in the example of PhenomXHM , due to quality and availability of NR simulations, these

calibration points are not distributed evenly across the three dimensions, as shown in

Fig. 4.1. Instead, they are mainly clustered around equal mass or non-spinning parts of

parameter space, with few points with high mass ratios and high spins.

Current precessing IMR waveform models are built in an approximate way by applying

a time-dependent rotation encoding the orbital precession dynamics to waveform modes

obtained in a frame that coprecesses with the orbit [128, 173]. This separation of the

precessional and orbital dynamics is well-motivated in the early inspiral where the relative

timescales are very distinct, but is not expected to be as accurate through merger where

the orbital and precessional timescale can become comparable. Indeed, in the currently

most widely-used phenom model PhenomXPHM the Euler angles are modelled throughout

the entire waveform using information from PN theory as described in Sec. 3.4.4, justified

by the observation that the PN angles behave smoothly and at high frequencies. While

this approximate implementation does give reasonable agreement to NR [165, 167, 168],

it is not expected to hold in areas of parameter space with high mass ratios and large in-

plane spins. In contrast, recent EOB models [48] make use of an approximation motivated
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Figure 4.1: Distribution of the 652 NR simulations used in calibration of
PhenomXHM across the three-dimensional intrinsic parameter space for aligned-spin
BBHs: mass ratio q; and aligned spin components ‰1, ‰2, which we have referred
to as ‰1z and ‰2z in this thesis. The colours of the dots indicate the code with
which the NR simulation was produced, SXS simulations shown in blue [171] and
orange [69], BAM simulations shown in green [68], and Einstein Toolkit [172]
simulations shown in pink. Figure taken from Ref. [282].

by the observed behaviour of precessing NR where the coprecessing frame continues to

precess roughly around the direction of final spin ‰f after merger [18], though this does

not entail any systematic fitting to precessing NR. Therefore, incorporation of strong-field

precession information into semi-analytic waveforms through calibration to precessing NR

will be crucial to improve the accuracy of these models and reduce model systematics.

Let us therefore now consider analogously calibrating a precessing semi-analytic model

in the same way as described above. As described in Sec. 2.4.2, the orbital precession

dynamics is sourced by the four spin components instantaneously orthogonal to the orbital

angular momentum (within the instantaneous orbital plane), and so now the waveform

depends on all six spin degrees of freedom of the binary, as well as the mass ratio, which

makes a total of seven intrinsic dimensions to calibrate to NR. If we assume similarly to

the example of PhenomXHM above, that ten calibration points are needed for each of these

dimensions, this results in requiring a seven-dimensional fit across 107 points in parameter

space. This naïve approach to calibrating precessing semi-analytic waveforms is therefore
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unfeasible for two reasons, the first being that precessing NR waveforms do not yet exist

in numbers this large. Precessing NR simulations are computationally challenging to

produce in large part due to their high dimensionality and lack of physical symmetries to

reduce computational cost, and this is particularly true at high mass ratios. The largest

publicly available catalogue of simulations to date is from the SXS collaboration [69],

which contains 2018 simulations, of spin magnitudes up to |‰| = 0.998 but mass ratios

only up to q Æ 10. The second problem with calibrating to precessing NR comes from

the high dimensional fitting procedure itself, as the hierarchical procedure currently used

by PhenomXHM relies on ansätze which become incrementally more complicated as more

intrinsic dimensions are included. This approach depends on a strategy of fitting first in

the dimensions or parameter combinations which a�ect the waveform most strongly,and

this is obfuscated by the high dimensionality of precessing binaries. Both these problems,

therefore, motivate a dimensional reduction strategy for precessing binaries, in order to

calibrate to semi-analytic models to NR.

The e�ective precession spin ‰p as introduced in Eq. 3.15 may present a natural way

for calibrating precession e�ects in the strong-field through a single scalar parameter via

the following e�ective mapping at some reference time tref :

‰̨1(tref) = (‰1x, ‰1y, ‰1z) ‘æ ‰̨Õ
1 = (‰p, 0, ‰1z), (4.1)

‰̨2(tref) = (‰2x, ‰2y, ‰2z) ‘æ ‰̨Õ
2 = (0, 0, ‰2z), (4.2)

where the spin components are defined in a Cartesian binary source frame with L̂(tref) = ẑ.

Such an identification reduces the four in-plane spin components to a single scalar quan-

tity, making the problem of incorporating precession e�ects more tractable while cap-

turing the dominant precession e�ects in the waveforms. This approach has success-

fully been implemented in the widely used phenomenological waveform approximant

IMRPhenomPv2 [165], though in the current generation of precessing models, higher order

PN spin information is included in the twisting up procedure to replicate fully precessing
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waveforms, as described in Chapter 3. More recently, ‰p has been used in Ref. [272] for

calibrating the non-precessing phenom model PhenomD [265, 266] to precessing NR. The

dominant quadrupolar modes in the coprecessing frame and the Euler angles have been

tuned to a relatively small set of precessing NR waveforms by reducing the precessing

spin dimensions to a one-dimensional ‰p-based parameter which varies with mass ratio.

We note that accuracy improvements as measured by mismatch for this model over its

non-calibrated counterpart are modest, and it does not include calibration for higher

modes.

The e�cacy of such a ‰p-parameterisation has only been demonstrated in the inspi-

ral [174] focusing on the (2, 2)-mode. Higher modes, however, are particularly important

in binaries with large mass and spin asymmetries, for which also precession e�ects are

more pronounced. While the radiation from a nonprecessing binary is dominated by the

quadrupolar (2, 2)-mode, which is predominantly emitted along L̂, in a precessing system

power is transferred from the (2, 2)-mode to HMs.These HMs can become comparable

in strength to the quadrupolar mode in the later inspiral and merger, and some modes,

especially the (2, ±1)-modes, can be particularly strong [173]. Additionally, a simple ‰p-

parameterisation fails to accurately reproduce precession-induced mode mixing and the

asymmetry between positive and negative m-modes [120]. In precessing systems where

the relative power in HMs can be comparable to the dominant quadrupolar mode, this

can lead to significant systematic errors [19, 48], as recent observations are starting to

indicate [38, 210]. Therefore, the accurate modelling of HMs is particularly important

in precessing systems. We will show in Sec. 4.3.1 that the simple ‰p-parameterisation of

Eqs. (4.2) fails to accurately reproduce the behavior of precessing HMs, motivating the

introduction of a new e�ective precession spin vector ‰̨‹ which incorporates spin e�ects

from both black holes, to address this issue. Focusing on the strong-field regime, we show

that a ‰̨‹-parameterisation, (i) matches the opening angle of the precession cone at a given

reference time; (ii) significantly better reproduces HMs than a ‰p-parameterisation; (iii)

more accurately mimics the precession dynamics, and (iv) matches the final state.This
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vectorial e�ective spin mapping could facilitate more accurate waveform modelling of

precession in the strong-field regime.

4.1.1 A New E�ective Precession Spin

To aid the calibration of the precessing sector of semi-analytic IMR waveform models, we

seek to capture the dominant behavior through dimensional reduction by reducing the

number of in-plane spin components through an e�ective map. To this end, we introduce

a new dimensionless e�ective precession spin vector, ‰̨‹(t) œ R2.

Our starting point for the construction of ‰̨‹ is the opening angle of the precession

cone at a reference time t = tref , ⁄L(tref) given by Eq.(2.99), which captures the amount

of precession in the system. We recall that the opening angle depends explicitly on the in-

plane spin components through S‹(t); we therefore seek a mapping such that this quantity

is approximately preserved at the reference time at which the mapping is applied. To do

so, we first place the in-plane spin projection of the total spin of the system onto the

larger black hole, such that

‰̨1‹(tref) ‘æ S̨‹(tref)/m2
1, ‰̨2‹(tref) ‘æ 0̨, (4.3)

where

S̨‹(tref) = m2
1 ‰̨1‹(tref) + m2

2 ‰̨2‹(tref). (4.4)

We find, however, that this mapping can be further improved by assigning it conditionally

to either the primary or secondary BH, depending on which BH has the largest in-plane

spin magnitude Si‹(tref) at the reference time. This conditional placement ensures that

a binary with an in-plane spin on only one BH is correctly reproduced. Furthermore, we

impose the Kerr limit on the BH spin by including appropriate normalization factors into

the definition of ‰̨‹. With these constraints, we obtain the following e�ective precession
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spin vector ‰̨‹(tref):

‰̨‹(tref) ©

Y
_____]

_____[

S̨‹

m2
1 + S2‹

, if S1‹ Ø S2‹,

S̨‹

m2
2 + S1‹

, if S1‹ < S2‹,

(4.5)

where the quantities S1‹, S2‹, S̨‹ are all evaluated at tref. We stress that the mass ratio

q and the spin components along L̂(tref) remain unaltered in this particular mapping.

Explicitly, in a Cartesian binary source frame with L̂(tref) © ẑ, if S1‹(tref) Ø S2‹(tref)

then we have

‰̨1 = (‰1x, ‰1y, ‰2z) ‘æ ‰̨1
Õ = (‰‹x, ‰‹y, ‰1z) (4.6)

‰̨2 = (‰2x, ‰2y, ‰2z) ‘æ ‰̨2
Õ = (0, 0, ‰2z), (4.7)

where ‰̨‹ = {‰‹,x, ‰‹,y} = {S‹,x/(m2
1 + S2‹), S‹,y/(m2

1 + S2‹)}. Conversely,if S1‹(tref) <

S2‹(tref) this mapping gives

‰̨1 = (‰1x, ‰1y, ‰2z) ‘æ ‰̨1
Õ = (0, 0, ‰1z) (4.8)

‰̨2 = (‰2x, ‰2y, ‰2z) ‘æ ‰̨2
Õ = (‰‹x, ‰‹y, ‰2z), (4.9)

where ‰̨‹ = {‰‹,x, ‰‹,y} = {S‹,x/(m2
2 + S1‹), S‹,y/(m2

2 + S1‹)}. We note that instead

of Cartesian coordinates, polar coordinates may be chosen. Then, |‰̨‹| represents the

magnitude of the mapped dimensionless spin vector and the azimuthal orientation, „‹, is

its angular position within the orbital plane at the reference time. We demonstrate the

e�cacy of this vectorial parameterisation, in particular for HMs, in Sec. 4.3.

To see the e�ect of this parameter reduction on the mode behaviour for a precessing bi-

nary, we present an example in Fig. 4.2. We show the (2, ±1)-modes for a fiducial precess-

ing binary with q = 1.4 and initial spins ‰̨1 = (0.075, 0.043, 0.05), ‰̨2 = (≠0.346, 0.6, ≠0.4).

The waveforms were produced using the NR surrogate waveform model NRSur7dq4 [160] as
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Figure 4.2: Amplitude of the (2, 1)-mode (left) and the (2, ≠1)-mode (right)
for a fiducial precessing binary with q = 1.4, ‰̨1(t0) = (0.075, 0.043, 0.05), and
‰̨2(t0) = (≠0.346, 0.6, ≠0.4). The fully precessing signal waveform is shown in
blue, and the template waveforms parameterised by ‰p and ‰̨‹ are shown in purple
and orange, respectively. The ‰̨‹ reproduces the phenomenology of this mode
markedly better than the ‰p-mapping, especially in the merger-ringdown portion
of the waveform.

further described in Sec. 4.2.1, with the orange modes produced using all six spin degrees

of freedom, the modes shown in teal represent the same binary when the four in-plane

spin components are replaced by a ‰̨‹-mapping as in Eqs. (4.6-4.9), and the modes in

purple when the in-plane spin components are replaced with a ‰p-mapping as in Eq. (4.2).

We find that ‰̨‹ captures the fully precessing modes significantly better than a simple ‰p

parameterisation. In particular, we see that unlike ‰p, ‰̨‹ reproduces the amplitude and

phasing of the mode oscillations on the orbital timescale and the amplitude modulations

on the precession timescale much more faithfully. Additionally, amplitude modulations in

the ringdown signal, which are completely missed in the ‰p-parameterisation, are much

better captured. We note that the precession of this fiducial binary is dominated by the

secondary BH spin – a region in the spin parameter space where ‰p knowingly performs

poorly.

We next illustrate the impact of the conditional placement on this same fiducial binary

of Figure 4.2, but this time showing the e�ect of an analogous conditional placement with

the ‰p-parameterisation. As ‰p is known to perform poorly in this region of parameter
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Figure 4.3: Amplitude of the (2, 1)-mode (left), and time evolution of the two
quaternion components, q1(t) and q2(t) (right), for the same fiducial binary as in
Figs. 4.2 and 4.14, but with ‰p conditionally placed on the secondary BH. The fully
precessing waveform mode and quaternions are shown in orange, with the system
parameterized by a conditionally placed ‰p shown in purple, and ‰̨‹ in teal. We
see that although the conditional placement of ‰p does lead to an improvement
in the accuracy with which it reproduces the (2, 1)-mode, ‰̨‹ still outperforms ‰p.
Additionally, conditionally placing ‰p does not improve the accuracy with which it
reproduces the precession dynamics, with ‰̨‹ still much more closely matching the
time evolution of the fully precessing q̂1 and q̂2 quaternion components.

space dominated by secondary spin, it is of interest to see whether an analogous con-

ditional placement of the ‰p-mapping improves agreement of the modes for this binary.

In Fig. 4.3, we show the fully precessing fiducial binary in orange, ‰̨‹-mapped system

in teal, and the ‰p-mapped system with conditional placement in purple. We show the

(2, 1)-mode in the left panel, as well as two of the four quaternion component evolutions

in the right panel. These quaternions are an alternative representation of the Euler angles

to describe the precession dynamics, as described further in Subsec. 4.2.1. We note that

now both ‰̨‹ and ‰p are placed on the secondary BH for this binary. We can see in the

left panel that the conditional placement does improve the accuracy with which ‰p repro-

duces the (2, 1)-mode; however the ‰̨‹-mapping still reproduces the phasing of the mode

significantly better. Additionally, we see in the right panel that the conditional placement

of ‰p does not produce the precession dynamics more accurately, with ‰̨‹ still much more

closely matching the time evolution of the fully precessing quaternion components.
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We present two additional examples of waveform modes and corresponding precession

dynamics produced using the e�ective spin mappings, both ‰p and ‰̨‹. For each of the

binaries considered here, we show the (2, 1)-mode, as well as two of the four quaternion

component evolutions, as above in Fig. 4.3. In all of the figures for these examples, the

fully precessing system’s results are shown in orange, the results parameterized by ‰̨‹ in

teal, and by ‰p in purple.

Figure 4.4: Amplitude of the (2, 1)-mode (left), and time evolution of the two
quaternion components, q1(t) and q2(t) (right), for an equal-mass binary with initial
spins ‰1(t0) = (0.225, 0.13, ≠0.15), and ‰2(t0) = (0.09, 0.15, 0.1). We show the fully
spinning waveform mode and quaternion components in orange. The mode and
quaternions parameterized by ‰p are shown in purple, and ‰̨‹ in teal. We see
that ‰̨‹ more faithfully reproduces the fully precessing (2, 1)-mode, and much more
accurately reproduces the precession dynamics, than ‰p.

The next binary we consider is equal-mass, i.e. q = 1, with initial spins ‰̨1(t0) =

(0.225, 0.13, ≠0.15), ‰̨2(t0) = (0.09, 0.15, 0.1). In this equal-mass limit, we expect ‰p to

perform poorly, and ‰̨‹ to perform much better, as discussed more thoroughly in Sec. 4.4.

Indeed, in the left panel of Figure 4.4, we see that ‰̨‹ better replicates the (2, 1)-mode for

this particular binary, with an amplitude closer to that of the fully precessing waveform

and slightly improved phasing. We see the improvement by using ‰̨‹ as opposed to ‰p

more clearly in the dynamics as shown in the right panel. The good agreement between

the time evolution of fully precessing quaternion components in orange and those of the

‰̨‹-mapped system in teal, is in stark contrast to the ‰p-mapped components in purple,
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which matches the dynamics poorly.

Figure 4.5: Amplitude of the (2, 1)-mode (left), and time evolution of the two
quaternion components, q1(t) and q2(t) (right), for a q = 3 fiducial binary, with
initial spins ‰̨1(t0) = (0.45, 0.26, ≠0.3) and ‰̨2(t0) = (0.15, 0.087, 0.1). The fully
precessing waveform mode and quaternions are shown in orange, with the system
parameterized by ‰p shown in purple, and ‰̨‹ in teal. We see that ‰̨‹ more faithfully
reproduces the fully precessing (2, 1)-mode, capturing the correct phasing of the
mode, and more accurately reproduces the precession dynamics represented by the
quaternion components, than ‰p.

Our final example is a binary with q = 3, and initial spins ‰̨1(t0) = (0.45, 0.26, ≠0.3),

‰̨2(t0) = (0.15, 0.08, 0.1). We note that in this example, unlike the fiducial binary shown

in Figure 4.2, ‰̨‹ is mapped onto the primary BH. The left panel of Figure 4.5 shows the

(2, 1)-mode, where we see that unlike in the previous example, the amplitudes of the two

mapped waveform modes are very similar to that of the fully precessing mode (orange).

However, ‰̨‹ clearly much better matches the phasing of the fully precessing mode, with

the orange and teal lines being indistinguishable for much of the inspiral, in contrast

to ‰p which shows a clear dephasing, especially in the merger ringdown. We also see

that, like for the other fiducial binaries, the quaternion components mapped by ‰̨‹, much

more faithfully represent the fully precessing quaternions, compared to the ‰p-mapped

components, demonstrating that ‰̨‹ better replicates the precession dynamics of the fully

precessing system. Therefore although the precession dominated by the primary BH spin

in Figure 4.5, where we still observe noticeable improvements with ‰̨‹ over ‰p.
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4.2 Methodology

4.2.1 Waveforms

To systematically assess the e�cacy of the new e�ective parameterisation Eq. (4.5), we

compare the waveforms obtained from the seven-dimensional system characterized by

(q, ‰̨1, ‰̨2) to the five-dimensional e�ective system described by (q, ‰1Î, ‰2Î, ‰̨‹) as well as

to the four-dimensional system given by (q, ‰1Î, ‰2Î, ‰p). As we are particularly interested

in testing the e�cacy of such mappings in the strong-field regime, we use the NR surrogate

model NRSur7dq4 [160] as provided through the public GWSURROGATE PYTHON pack-

age [175] to generate late inspiral-merger-ringdown waveforms for all our analyses. This

is a surrogate model built over a set of existing NR simulations as described in Sec. 3.5,

to interpolate over them in a pre-defined parameter space. As it is based upon NR, it

therefore contains the full precession and spin dynamics as well as their imprint on the

waveforms, with no spin dimension reductions or e�ective parameterisations. The com-

putational e�ciency of this model allows us to assess the mappings over a dense sampling

of the intrinsic parameter space. However, due to the limited parameter ranges of the

NR simulations it is built upon, the surrogate is limited to dimensionless spin magnitudes

|‰i| Æ 0.8 and mass ratios q Æ 4. While precession e�ects are even more pronounced

for higher mass ratios, the importance of the in-plane spin on the smaller BH decreases

and therefore we expect any dimensional reduction that is built to capture the dominant

precession spin to perform even better in this limit.

The surrogate model represents an interpolant across a discrete set of NR simula-

tions [89, 90, 152]. The precessing waveform modes up to ¸ Æ 4 are obtained by following

the strategy outlined in Sec. 3.1, where the coprecessing modes are further decomposed

into coorbital modes to further simplify their structure,

hcoprec
¸m (t) = eim�(t)hcoorb

¸m (t), (4.10)

79



4. A NEW EFFECTIVE PRECESSION SPIN

where �(t) is the relative angular velocity relating the two frames [91].

Unlike most other waveform models, the surrogate makes use of four unit quaternion

components {q̂0(t), q̂1(t), q̂2(t), q̂3(t)} instead of three Euler angles to describe the preces-

sion dynamics of the orbital plane [125]. Importantly, the precessing modes are obtained

in an inertial frame corresponding to L̂(t0) © ẑ at the initial time t0, as opposed to the

more commonly used Ĵ-aligned frame. In this coordinate frame, the xy-plane coincides

with the initial orbital plane of the binary with the x-axis parallel to the separation vector

pointing from the smaller black hole to the larger one. Due to this binary source frame

choice, caution must be taken when interpreting the physical meaning of the quaternions,

as they do not represent a transformation to the commonly-used frame ‘J-frame’, where

the initial z-axis is aligned with the total angular momentum.

The resulting waveforms are of a fixed length, from t0 = ≠4300M , the negative sign

indicating premerger, up to t = +100M after the merger. This relatively short length

makes them unsuitable for describing the waveforms of low mass binaries M . 70M§

assuming a starting frequency of 20Hz. The surrogate determines the coalescence time tc

as the peak of the quadrature sum of the mode amplitudes,

tc = max
t

Ûÿ

¸m

|h¸m(t)|2, (4.11)

and shifts the time arrays such that the peak amplitude occurs at tc = 0.

4.2.2 Faithfulness for Precessing Waveforms

For our quantitative comparisons, we define h to represent the fully precessing waveform

with all 6 spin degrees of freedom, and h‡ the corresponding waveform produced by an

e�ective mapping, where ‡ œ [‰p, ‰̨‹]. Hereafter, we refer to h as the signal waveform,

and to h‡ as the template waveform. The e�ective mappings are applied at the surrogate

initial time t0, such that the full and mapped spins are used as initial data to produce

the signal and template waveforms respectively. To quantify how well either mapping

80



4. A NEW EFFECTIVE PRECESSION SPIN

reproduces the full waveform, we compute the match (faithfulness) between h and h‡.

We defined the match in Eq. (2.74) to the noise-weighted inner product between two

waveforms maximized over a time and phase shift of the template waveform. To be

concrete, in this paper we will compute matches between the signal waveform h and

template waveform h‡:

M(h, h‡) = max
tc‡ ,„0‡

Èh, h‡Í
Ò

Èh, hÍÈh‡, h‡Í

, (4.12)

where the inner product is defined as in Eq. (2.75). In what follows, h and h‡ either

denote individual waveform modes h¸m defined as in Eq. (3.3), or the complex strain.

To assess how accurately individual modes, in particular HMs, are reproduced under

the e�ective mapping, we compute individual mode-by-mode matches between each spin

mapping and the full-spin waveform; i.e. for each pair (¸, m), h, h‡ in Eq. (4.12) are

replaced by individual modes h æ h¸m and h‡ æ h‡,¸m.

As the odd m-modes are sourced by mass and spin asymmetries, they are often con-

taminated by numerical noise for systems with small asymmetries. We therefore employ

an additional cut on the energy E¸m contained in the inertial-frame (2, ±1)≠ and (3, ±3)-

modes of the fully spinning mode prior to calculating the match, where the mode energy

is given by

E¸m = 1
16fi

⁄ tf

t0

|ḣ¸m(·)|d·, (4.13)

where tf is the final time of the surrogate waveforms. Based on calculations of the energy

contained in those modes for binaries without mass or spin asymmetries, we find the energy

thresholds for these modes given by the values listed in Table 4.1. Modes with E¸m less

than these values are discarded in the mode-by-mode match calculations performed in

Sec. 4.3.1.

We perform mode-by-mode match calculations using both white noise, i.e. Sn(f) = 1

and the projected aLIGO PSD for the fourth observing run [51], denoted Mwhite and

MO4 respectively. The white noise matches are to assess the systematic errors induced by
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(¸,m)-mode E¸m threshold
(2, ±1) 1.0 ◊ 10≠6

(3, ±3) 5.5 ◊ 10≠7

Table 4.1: Mode energy thresholds for odd m-modes. If the energy of a particular
mode is below its threshold, the mode is considered to be numerical noise and
excluded from the mode-by-mode match calculation.

the mappings in the absence of detector-specific frequency sensitivities, while the PSD-

weighted matches demonstrate the e�ect for a given detector. For the detector PSD

matches we choose a starting frequency of fmin = 20Hz, and truncate the waveforms at

t = 50M after the peak as determined by Eq. (4.11) to remove postmerger numerical

noise.

While the individual mode matches allow us to assess how well HMs in particular

are captured by the lower-dimensional spin parameterisation, GW detectors measure the

strain, which also depends on extrinsic parameters of the source such as the luminosity

distance, the e�ective polarization angle Ÿ [176] and the binary inclination ÿ relative to

the line of sight of an observer.

Following Refs. [19, 48, 126], we compute the strain match by analytically optimizing

over the template polarization angle Ÿ‡ and numerically optimizing over the template

reference phase „0‡ and template coalescence time tc‡,

Mstrain(M, ÿ, „0, Ÿ) = max
tc‡ ,„0‡ ,Ÿ‡

Èh, h‡Í
Ò

Èh, hÍÈh‡, h‡Í

------
ÿ=ÿ‡

. (4.14)

We do not optimize over any intrinsic parameters. We note that Eq. (4.14) still depends

on the signal polarization Ÿ and reference phase „0. By averaging over these two angles,

we obtain the sky-and-polarization-averaged strain match,

Mstrain(M, ÿ) = 1
8fi2

⁄ 2fi

0
dŸ

⁄ 2fi

0
d„0Mstrain(M, ÿ, „0, Ÿ). (4.15)

Additionally, to account for the correlation between low matches and low signal-to-
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noise ratio (SNR), we also compute the SNR-weighted strain match [19, 48] given by

MSNR(M, ÿ) =
Aq

i(M(h, h‡))3
Èhi, hiÍ

3/2
q

iÈhi, hiÍ
3/2

B1/3

, (4.16)

where the sum is over a discrete range of source polarizations Ÿ and initial phases „0 as

detailed in Sec. 4.2.3.

We note that we do not apply the postmerger truncation at t = 50M , nor do we

impose the mode energy thresholds of Table 4.1 when computing the sky-and-polarization-

averaged and the SNR-weighted strain matches. For strain matches we take into account

all modes up to ¸ = 4 as provided by the NR surrogate.

Lastly, rather than showing the agreement between two waveforms, it can be advan-

tageous to quantify the disagreement through the mismatch MM instead:

MMstrain = 1 ≠ Mstrain, (4.17)

MMSNR = 1 ≠ MSNR. (4.18)

4.2.3 Binary Configurations

The mode-by-mode matches are computed for a large number of mass ratios and spins

that systematically sample the validity range of the surrogate model with the details

provided in the second column of Table 4.2. We choose the initial time as the reference

time, i.e. tref © t0, and sample the initial spins in a spherical coordinate system using

the spin magnitudes ||‰̨i||, the azimuthal orientations „i = arccos(Ŝi · x̂), and the cosine

of the tilt angles cos(◊i) = Ŝi · L̂. Specifically, we keep the initial azimuthal orientation

of the spin of the larger BH „1 of ‰̨1‹ fixed, while rotating ‰̨2‹ to achieve a range of

angular azimuthal separations, and vary the initial tilt angles ◊i systematically. Further,

we only choose configurations with at least one spinning BH, demanding that at least one

BH has a nonzero in-plane spin, thereby excluding aligned-spin or nonspinning binaries.

This amounts to a total of 47,136 unique binary configurations in terms of their intrinsic
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parameters {q, ‰̨1, ‰̨2}. When considering a detector PSD, we additionally consider three

values of the total mass, 75, 150 and 250M§.
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MM¸m MMstrain MMSNR

||‰̨i||

||‰̨i|| œ [0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8],

if ||‰̨1|| =0, ||‰̨2|| ”= 0
||‰̨i|| œ U [0, 0.8] ||‰̨1||, ||‰̨2|| œ U [0, 0.8]

◊i [rad] ◊i œ [0, fi/3, 2fi/3, fi],
if ◊1 œ [0, fi], ◊2 /œ [0, fi] cos(◊i) œ U [≠1, 1] cos(◊i) œ U [≠1, 1]

„i [rad]
„1 = fi/3,

„2 œ [0, fi/3, 2fi/3,
fi, 4fi/3, 5fi/3]

„i œ U [0, 2fi] „i œ U [0, 2fi]

q q œ [1, 1.5, 2, 3, 4] q œ U [1, 4] q œ U [1, 4]

Mtot [M§] Mtot œ [75, 150, 250]
(PSD matches only) Mtot œ U [70, 250] Mtot œ [75, 100, 125,

150, 175, 200, 225, 250]
ÿ [rad] – cos(ÿ) œ U [≠1, 1] ÿ = fi/3

„0 [rad] – „0 œ U [0, 2fi]
„0 œ [0, fi/4, fi/2, 3fi/4,

fi, 5fi/4, 3fi/2, 7fi/4]
(included in sum)

Ÿ [rad] – Ÿ œ U [0, fi/4] Ÿ œ [0, fi/12, fi/6, fi/4]
(included in sum)

Total binaries
sampled

MM¸m,white: 47,136
MM¸m,PSD: 141,408 20,833 ...

Table 4.2: Binary configurations used in the di�erent match calculations. Binaries
for mode-by-mode match calculations are sampled systematically across the intrin-
sic parameter space, and three total mass scales are used for the O4 PSD matches.
Since it is the relative azimuthal separation of spins which is important, we choose
to keep „1 = fi/3 fixed while changing „2. Additionally, we place constraints on the
spin magnitudes and tilt angles such that none of our binary configurations have
both BHs with aligned spins or non-spinning. For the strain matches, the intrinsic
parameters are drawn from random uniform distributions (shown by U [a, b] in the
table); the SNR-weighted matches use fixed extrinsic parameter values while they
are drawn randomly for the sky-and-polarization-averaged matches.

For the strain matches as given in Eqs. (4.15) and (4.16), additional extrinsic param-

eters, namely binary inclination ÿ, initial phase „0, and polarization Ÿ, need to be taken

into account. In such high dimensions, systematic sampling becomes unfeasible. There-

fore, for the sky-and-polarization-averaged matches we draw the intrinsic and extrinsic

binary parameters from random uniform distributions as detailed in the third column of

Table 4.2, considering a total of 20, 833 unique binary configurations.

For the SNR-weighted strain matches, we first draw 100 binary configurations ran-

domly from the 20,833 used to compute the sky-and-polarization-averaged strain matches,
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only considering their intrinsic parameters, {q, |‰̨1|, |‰̨2|, cos(◊1), cos(◊2), „1, „2}. We fix

the source inclination at a moderate inclination of ÿ = fi/3. As detailed in the last col-

umn of Table 4.2, for each binary configuration we choose eight initial phase and four

polarization values and compute 32 matches M(h, h‡), one for each pair {„0, Ÿ}, which

are then summed into a single SNR-weighted match for each binary configuration as per

Eq. (4.16). We repeat this calculation for each of the total masses detailed in Table 4.2,

noting that we use the same 100 intrinsic binary configurations for each M . This yields

800 SNR-weighted strain matches for each mapping ‡ œ {‰p, ‰̨‹}.

4.3 Results

4.3.1 Mode Analysis

We first assess how well the vectorial e�ective spin parameter ‰̨‹ reproduces individual

modes, in particular HMs, for di�erent mass ratios. To quantify the e�cacy of ‰̨‹ across

the parameter space, we compute white noise mode-by-mode matches for the (2, ±2)-

modes and a selection of HMs for all binaries listed in the second column of Table 4.2.

Figure 4.6 shows the cumulative match results for the (2, 2)≠ and (2, 1)-modes for mass

ratio q = 1 and q = 3.

We expect the ‰p-parameterisation to perform well at replicating the dominant (2, ±2)-

mode behavior, and indeed we see similar results in this mode for both parameterisations,

if slightly improved with the new e�ective spin, except for the equal-mass case, where we

find a more marked improvement. We attribute this to the fact that ‰p is designed to

replicate the average precession rate, but in equal-mass configurations the in-plane spin

vectors precess at the same rate and become orientationally locked, which is not captured

correctly by ‰p [132, 174]. Additionally, ‰̨‹ takes into account the in-plane spins on

both black holes, while ‰p selects only the larger spin component leading to a systematic

underestimation of the total in-plane spin for equal-mass cases.

We observe the most dramatic improvements in the (2, ±1)≠modes. For example, for
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Figure 4.6: Cumulative histograms of white noise matches for the (2, 2)-mode
(top row) and the (2, 1)-mode (bottom row) for 9,120 binaries with mass ratios
q = 1 (left column) and 9,504 binaries with q = 3 (right column). Details of
how these binaries are systematically sampled can be found in Table 4.2. Teal
histograms show the results using the ‰̨‹-parameterisation, purple ones ‰p. The
dashed horizontal lines indicate the percentage of matches below 0.99. Using ‰̨‹, we
see a clear improvement over the ‰p-mapping for the (2, 1)-mode, and comparable
if slightly better performance for the (2, 2)-mode. Results for additional modes and
mass ratios are presented in Figure 4.7.

q = 3 shown in Figure 4.6, the percentage of matches below 0.99 decreases dramatically

from 94.73% with ‰p to 8.2% with ‰̨‹. Note that the long tails toward very low matches

for the ‰p-parameterisation, and the comparatively short ones of ‰̨‹, are a generic feature

across all HMs we analyzed, suggesting that ‰̨‹ better replicates the higher mode behavior

even when it performs at its worst.

Results of white noises matches for additional modes and mass ratios are shown in
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Figure 4.7: Complete results for white noise matches between the fully spinning
waveform and each of the e�ective spin parameterisations, ‰̨‹ (teal) and ‰p (purple).
We show percentages of matches split by mass ratio and mode, which fall below a
threshold of 0.99.The dashed horizontal lines indicate the 1%, 10% and 50% marks.
We see improved results using ‰̨‹ as opposed to ‰p across all mass ratios and
modes, and note particularly the dramatic improvements in performance for HMs,
especially the (2, ±1)-modes.

Fig. 4.7. We split the results by mass ratio q œ [1, 1.5, 2, 3, 4] and mode (¸, m) œ [(2 ±

2), (2 ± 1), (3, ±3), (4, ±4)]. We show the percentages of matches below 0.99 between

the fully spinning waveform, and the waveforms produced by each of the two e�ective

spins, ‰̨‹ in teal, and ‰p in purple. We first note that at the match threshold of 0.99,

we see an improvement by using ‰̨‹ over ‰p, across all mass ratios and modes. These

improvements are particularly dramatic for higher modes, particularly the (2, ±1)-modes.

For example, at mass ratio q = 4, the percentage of (2, 1)-mode matches below 0.99 using

the ‰p parameterisation is 96.3%, which improves dramatically with ‰̨‹ to just 4.3%.

The parameterisations perform more similarly for the (2, ±2)-modes, but even for the

quadrupolar modes we see small improvements. For example, at mass ratio q = 1.5 we

see the percentage of (2, 2)-mode matches below 0.99 improving from 8.5% with ‰p to

4.7% with ‰̨‹.
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Intriguingly, for the (2, ±1) and (4, ±4)-modes, both parameterisations perform worst

at q ≥ 1.5, after which their performance improves with increasing mass ratio. To further

investigate this intermediate region between the equal-mass regime and higher mass ratios

where the secondary spin becomes less important, we performed additional white noise

matches at mass ratios q œ [1.2, 1.4, 1.6, 1.8]. We find that the performance of both spin

mappings improves with increasing mass ratio for the (2, ±2)≠ and (3, ±3)-modes, with

‰̨‹ consistently outperforming ‰p. We also find that ‰̨‹ performs worst around q ≥ 1.4 for

the (2, ±1)≠ and (4, ±4)-modes, but that the distributions for both mappings are fairly

flat between q = 1.2 and q = 2, and even at its worst ‰̨‹ still vastly outperforms ‰p. For

example, in the (2, 1)-mode, at q = 1.4, the percentage of matches below 0.99 is 100% with

‰p, and only 26.35% with ‰̨‹. We also note that we find only minor di�erences between

the positive and negative m-modes for both mappings, and neither performs consistently

worse at replicating either positive or negative m-modes.

Additionally, our new mapping shows moderate improvements for the (3, ±3)≠modes

and striking improvements for the (4, ±4)-modes, with the improvements particularly

marked at equal-mass and at our highest mass ratio q = 4. In summary, we find that the

‰̨‹-parameterisation performs consistently better than ‰p for every mass ratio and across

all modes, and in particular for odd m-modes.
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In addition to the white noise matches, we repeat the analysis using the projected O4

aLIGO PSD [51] with fmin = 20Hz. These matches also require a total mass scale, so

we choose three masses M œ {75, 150, 250}M§ compatible with the fixed length of the

surrogate waveforms, bringing the total sampled binaries to 141, 408. Full details of the

sampling are given in Table 4.2. We obtain qualitatively similar results to the white noise

matches, as shown in Figure 4.8. All of the matches improve slightly compared to the

white noise matches across both mappings due to the frequency weighting of the PSD, but

the features of our results and conclusions remain the same: The ‰̨‹-mapping significantly

improves upon ‰p for the (2, ±1)- and (4, ±4)-modes, with moderate improvements for

the (3, ±3)≠modes, and comparable if slightly better performance for the (2, ±2)-modes.

4.3.2 Strain Analysis

In the previous section we have demonstrated the improvement of ‰̨‹ over ‰p at the level

of individual h¸m-modes. We now assess the degree to which the improvement in the HMs

impacts the strain. Figure 4.9 shows the strain for the fiducial binary at an inclination of

ÿ = fi/3. The excellent agreement between the fully precessing waveform (orange) and the

one parameterised by ‰̨‹ (teal) throughout the late inspiral as well as the merger ringdown

is clearly visible. To quantify this agreement, we first compute the sky-and-polarization-

averaged strain mismatches for 20,833 binary configurations as detailed in Table 4.2 using

the O4 PSD and fmin = 20Hz. Our results for both e�ective parameterisations are shown

in Figure 4.10. Using ‰̨‹ rather than ‰p, we find a median improvement of more than 1

order of magnitude from 4 ◊ 10≠3 to 2 ◊ 10≠4. Furthermore, we note the non-negligible

tail of extremely low mismatches below 10≠6 for ‰̨‹.

As low matches are often correlated with low SNRs and, therefore, with a lower de-

tection probability, we also compute the SNR-weighted mismatch Eq. (4.18) for 100 ran-

domly drawn intrinsic binary configurations as given in the fourth column of Table 4.2

for a moderate inclination of ÿ = fi/3 at t0. Similar to the sky-and-polarization-averaged

strain mismatches, we see an improvement of around 1 order of magnitude when using
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Figure 4.8: Full results for the O4 PSD-weighted matches between the fully spin-
ning waveform and each of the e�ective spin parameterisations, ‰̨‹ (teal) and ‰p

(purple), split by total mass, mass ratio, and mode, which have a match less than
0.99. The dashed horizontal lines indicate 1%, 10% and 50%. Similar to the white
noise matches of Figure 4.7, we see improvements by using ‰̨‹ over ‰p across all
masses, mass ratios and modes. We note the dramatic improvements in performance
for HMs, particularly the (2, ±1)-modes, and also the high degree of similarity be-
tween each of the three total masses.
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Figure 4.9: Amplitude of the waveform strain h(t) for the same fiducial binary
as in Figure 4.2 at an inclination of ÿ = fi/3. The figure shows the fully precessing
waveform (orange) along with both the ‰p (purple) and ‰̨‹-parameterisations (teal).
The ‰̨‹-mapping reproduces the strain amplitude much more faithfully than ‰p,
especially in the late inspiral portion of the waveform. Note that in the late inspiral,
where the blue line cannot be seen, it is indistinguishable from the orange line.

the ‰̨‹-parameterisation instead of ‰p, as shown in Figure 4.11. The worst two cases for

each parameterisation are highlighted in both panels. We see that the worst cases for ‰̨‹

(teal and blue) perform similarly under both mappings, if slightly better with the new

‰̨‹-mapping. These cases both have a mass ratio of q ≥ 1.5, which as noted previously in

Sec. 4.3.1, is a mass ratio where both parameterisations perform worst. The worst cases

for ‰p (purple and orange) on the other hand, show significant improvements of around 2

and 4 orders of magnitude respectively across the entire mass range when the ‰̨‹-mapping

is used.

To better understand these marked improvements we employ several diagnostics. First,

we investigate whether there exists a correlation between the initial opening angle of the

precession cone ⁄L(t0) [Eq. (2.99)] and the sky-and-polarization-averaged strain mismatch.

We define the di�erence in the initial precession cone opening angle between the mapped
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Figure 4.10: Histograms of the sky-and-polarization-averaged strain mismatches
MMstrain between the fully precessing waveform and each of the two-spin mappings
using the O4 PSD. The parameters for each of the 20,833 binaries tested were drawn
from random uniform distributions as outlined in Table 4.2. The dashed vertical
lines show the median mismatch for each mapping. We see an improvement in the
median mismatch of more than one order of magnitude when using ‰̨‹.

and unmapped system, �⁄L(t0), as

�⁄L(t0) © ⁄L(t0) ≠ ⁄‡L(t0), (4.19)

where ⁄L is given by Eq. (2.99). The definition of ⁄‡L is the same as for ⁄L, but replaces

S‹ with S‡‹, where S‹ is the initial total in-plane spin magnitude before the mapping and

S‡‹ is the total in-plane spin magnitude after the mapping. All quantities are evaluated

at the initial time t0, and we approximate L by its Newtonian value L = µ
Ô

Mr, where

µ = m1m2/M is the reduced mass and r = M1/3Ê≠2/3
orb with Êorb the orbital angular

frequency.

Figure 4.12 shows �⁄L(t0) against the strain mismatch for each of the 20,833 binaries,

calculated with both the ‰̨‹ (teal) and ‰p (purple) e�ective spin mappings. For the new
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Figure 4.11: SNR-weighted strain mismatches MMSNR as a function of binary
total mass M for 100 binaries for the ‰̨‹ (left) and ‰p (right) mappings. The
teal and blue lines correspond to the cases q = 1.3, ‰̨1(t0) = (0.37, ≠0.36, 0.46),
‰̨2(t0) = (≠0.32, 0.02, 0.13) and q = 1.6, ‰̨1(t0) = (≠0.21, 0.23, 0.58), ‰̨2(t0) =
(≠0.26, ≠0.56, 0.34) respectively, which show the worst results for the ‰̨‹-mapping.
The purple and orange lines show the two cases q = 3.2, ‰̨1(t0) = (≠0.66, 0.12, 0.01),
‰̨2(t0) = (0.23, ≠0.25, ≠0.03) and q = 3.2, ‰̨1(t0) = (≠0.55, 0.09, 0.07), ‰̨2(t0) =
(0.03, 0.04, 0.03) where ‰p shows the worst performance. We see an average im-
provement of around 1 order of magnitude using the ‰̨‹-mapping.

mapping, we see a clear correlation between lower values of �⁄L(t0) and lower strain

mismatches. Overall, the ‰̨‹-parameterisation yields a more accurate initial cone opening

angle resulting in a more faithful representation of the fully precessing waveform.

The better agreement between the initial opening angles suggests that the spins them-

selves are captured more faithfully. To show this, as a second diagnostic we compare the

spin evolutions of a fully precessing binary with its e�ective counterparts. Figure 4.13

shows the time evolution of the total in-plane spin S‹ (orange) for the fully precessing

fiducial binary and those of the ‰̨‹ (teal) and ‰p (purple) parameterisations for the fidu-

cial binary. We obtain these by transforming the spin evolutions in the inertial frame

to the coprecessing frame using the quaternions. It is evident that the two-dimensional
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Figure 4.12: Sky-and-polarization-averaged strain mismatch MMstrain versus
�⁄L(t0) for the 20,833 binaries with both the ‰̨‹ (teal) and ‰p (purple) e�ec-
tive spin parameterisations. We observe a slight correlation between small �⁄L(t0)
and low mismatches for ‰̨‹, yielding a significantly better replication of the initial
opening cone in comparison to ‰p.

Figure 4.13: Time evolution of total in-plane spin magnitude S‹ in the coprecess-
ing frame for the same fiducial binary as in Figure 4.2 (orange). The purple graph
shows the spin evolution obtained after applying the ‰p-mapping at the initial time
t0, the teal graph that of the ‰̨‹-parameterisation. We see that ‰̨‹ preserves the
total in-plane spin magnitude, and thus the spin dynamics, much better than the
‰p-mapping.

‰̨‹-mapping represents the full-spin dynamics much more faithfully than ‰p.

As a third diagnostic, we investigate how faithfully both mappings reproduce the
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fully spinning precession dynamics, which is represented by the unit quaternions q̂i. In

Figure 4.14 we show the time evolution of the four unit quaternion components of the

fiducial binary. The new e�ective spin mapping ‰̨‹ clearly replicates the time evolution

of each quaternion component much more accurately than ‰p, with the most dramatic

improvement observed for q̂1 and q̂2.

Figure 4.14: Time evolution of the quaternion components q̂0 and q̂3 (left), and
q̂1 and q̂2 (right) for the fiducial precessing binary. The system parameterised by
‰̨‹ (teal) reproduces the precession dynamics of the fully spinning system (orange)
much more faithfully than the ‰p-mapping (purple).

To quantify the improvement in replicating the precession dynamics, we perform a

match calculation for each of the four quaternion components q̂i, i œ [0, 1, 2, 3], similar to

the white match calculation in Eq. (4.12) but replacing the waveforms h and h‡ with the

quaternion components,

Mq̂i = M(q̂i, q̂‡,i), (4.20)

where we use Sn = 1, q̂i denotes the quaternion component from the fully precessing

system, and q̂‡,i is the quaternion component produced by the e�ective mapped system,

with ‡ œ [‰p, ‰̨‹].

We compute the quaternion matches for the same 20,833 binaries used in the sky and

polarization-averaged strain match calculations. Figure 4.15 shows the results for q̂1 (left)

and q̂2 (right), which show the largest improvements: The percentage of matches below
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0.99 improves from 98.65% with ‰p to 46.33% with ‰̨‹ for q̂1, and for q̂2 it improves

from 95.71% to 46.37%. We see a negligible di�erence in the results for q̂0, which is well

reproduced by both spin mappings: None of cases have a match value below 0.99. We

see a small improvement in the results for q̂3, with the percentage of quaternion matches

below 0.99 dropping from 40.5% for ‰p to 34.21% for ‰̨‹. These results indicate that

the observed improvements when using ‰̨‹ can indeed be attributed to a more faithful

representation of precession dynamics itself.

Figure 4.15: Cumulative distribution of matches for two of the four quaternion
elements q̂1 (left) and q̂2 (right), between the fully precessing dynamics and each of
the ‰̨‹ (teal) and ‰p-mapped (purple) systems. The dashed horizontal lines indicate
the percentages of matches which are below 0.99 for each e�ective mapping. We
see significant improvements for the ‰̨‹-parameterisation over ‰p.

4.3.3 Accuracy of the Final Spin and Recoil

Finally, we quantify how well the ‰̨‹-parameterisation is able to reproduce the final spin

and recoil of the remnant black hole. The final mass and spin of the remnant determine

the quasinormal modes of the ringdown [177–180], so it is therefore crucial to understand

the accuracy with which the final state can be replicated by the reduced set of spin

parameters. We will focus on the final spin estimates as previous comparisons against

NR simulations have shown that the final mass estimate is only very weakly dependent

on precession [127].
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To evaluate the final spin using the surrogate model we first evolve the BH spins in the

inertial frame from t0 to a time t = ≠100M before merger, which are then used to evaluate

the remnant fits of Ref. [181] via the public Python package surfinBH [182]. The same

procedure is followed to obtain the results under the two-spin parameterisations, where

either e�ective spin map is applied at the initial time t0. We evaluate the remnant spin

for the 20,833 binary configuration of column two in Table 4.2. We assess the accuracy of

the final state under the two mappings by calculating the di�erences in the remnant spin

magnitude �‰f , the final spin tilt angle �◊f , the azimuthal spin angle �„f , the recoil

velocity �vf and its tilt angle �◊vf
defined as

�‰f = ||‰̨f || ≠ ||‰̨f‡||, (4.21)

�◊f = || arccos(ẑ · ‰̂f ) ≠ arccos(ẑ · ‰̂f‡)||, (4.22)

�„f = arccos(‰̂f‹ · ‰̂f‡‹), (4.23)

�vf = ||v̨f || ≠ ||v̨f‡||, (4.24)

�◊vf
= || arccos(ẑ · v̂f ) ≠ arccos(ẑ · v̂f‡)||, (4.25)

where ‡ œ [‰p, ‰̨‹], and ‰̨f‹ indicates the xy-components of the final spin vector in the

inertial frame. We note that the remnant spin and recoil velocities are also returned in the

inertial coordinate frame of the NR surrogate, which has no particular physical meaning

postmerger. However, as we are computing relative di�erences in magnitudes and angles,

this gauge choice has no e�ect on the results presented here.

We find marginal improvements in the accuracy of the final spin magnitude and tilt

angle using the ‰̨‹-mapping as opposed to ‰p. The median tilt angle di�erence �◊f

improves slightly from 2.30 ◊ 10≠3 rad with ‰p to 1.43 ◊ 10≠3 rad with ‰̨‹; the absolute

value �‰f also improves slightly from 1.75 ◊ 10≠3 for ‰p to 9.96 ◊ 10≠4 for ‰̨‹. However,

the largest improvement is found for the azimuthal angle �„f , which encapsulates the

di�erence in the relative angle in the xy-plane of the inertial frame as shown in Figure 4.16.

We see a dramatic di�erence between the two mappings, with ‰̨‹ e�ectively reproducing
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the azimuthal orientation with a median error of less than 0.1 rad, whereas the ‰p-mapping

poorly replicates the azimuthal orientation with a median di�erence of more than 1 rad,

and a significant proportion of di�erences around �„ = fi. We also note the significantly

long tail of the ‰̨‹ histogram toward angle di�erences of zero.

Figure 4.16: Error in the azimuthal angle of the final spin state, �„f , in radians,
between the final spin state produced by the fully precessing waveform, ‰f , and
the resulting final spin state of the waveform produced by the ‰̨‹ (teal) and ‰p

(purple) mappings. The new e�ective spin ‰̨‹ reproduces the azimuthal angle of
the remnant spin much more accurately, reducing the median error to less than 0.1
rad.

We now analyze the e�ect of the two mappings on the recoil velocity vf of the final

black hole. For the recoil velocity tilt angle �◊vf
, i.e. the polar direction of the recoil,

we find a large improvement from a median error of 0.67 rad for ‰p to 0.08 rad for ‰̨‹

as shown in the right panel of Figure 4.17. For the recoil velocity itself, we only find a

modest improvement in �vf from a median error of 3.81 ◊ 10≠4 c for ‰p to 1.47 ◊ 10≠4 c

for ‰̨‹, corresponding to an improvement in accuracy of ≥ 70 km/s on average.

To summarize, overall the ‰̨‹-parameterisations reproduce the final state, in particular

the orientation of the final spin and the direction of the recoil, much more accurately. Both

e�ective spin parameterisations perform similarly in determining the final spin magnitude.

We note that the comparison using ‰p is not directly comparable to the definition of

the final spin used in semi-analytical waveform models, which use (a variety of) in-plane
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spin corrections to modify the final spin of an aligned-spin binary [168]. The current

generation of precessing phenom models [19, 165, 167] apply a correction of the form

Sp/M2
f , where Mf is the remnant mass and Sp is an e�ective in-plane spin contribution.

In [165, 167], Sp is taken to be defined as in Eq. (3.14), which is similar to the results

presented here obtained by applying the ‰p-mapping [127, 145]. For the more recent

model presented in [168], a range of di�erent final spin mappings have been implemented

including the ‰p-mapping as well as a precession-averaged mapping that attempts to

account for the change in the aligned-spin components due to nutation e�ects. The EOB

models [48] employ the final spin fits of [183] which introduce corrections to the aligned-

spin final state fits that depend on the angle between the two in-plane spin vectors and the

projection of the spins along the orbital angular momentum. As discussed in [48, 178] and

above, a crucial choice is the separation at which the spins are used to evaluate the final

state, taken to be r = 10M in [48]. This approach enables EOB models to account for the

evolution of the spin vectors ensuring that the same waveform is produced irrespective of

the initial separation.

Figure 4.17: Absolute value of the error in the recoil velocity magnitude �vf

(left) in units of c, and recoil velocity tilt angle �◊vf
(right) in radians, between the

fully spinning waveform and each of the ‰̨‹≠ (teal) ‰p≠ (purple) mappings. The
dashed vertical lines indicate the median error values.
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4.4 Discussion

The inclusion of fully relativistic precession e�ects in semi-analytic IMR waveform mod-

els in the strong-field regime remains a challenging problem, with none of the current

waveform models from either the phenom or the EOB waveform family including cali-

bration to NR in the precessing sector. The high dimensionality of the precessing BBH

parameter space obfuscates a clear path for calibration. E�ective spin parameterisations

to reduce the number of spin degrees of freedom are a promising way forward to includ-

ing fully relativistic precession in the strong-field regime. Previously, a scalar quantity

‰p was introduced to this e�ect but its e�cacy was only demonstrated for the inspiral

regime [174]. Here, we have assessed its applicability in the strong-field regime. Crucially,

we have found that while ‰p does faithfully represent the (2, 2)-mode of the majority of

fully precessing systems, it does not accurately reproduce HMs. Since HMs are excited

by mass and spin asymmetries, which can be very pronounced for precessing binaries,

they carry crucial parameter degeneracy breaking power [95, 97, 98, 102, 108, 115] mak-

ing the accurate modelling of HMs critical. Therefore, NR calibration through a simple

‰p-parameterisation is unlikely to be su�cient to satisfy the accuracy requirements for

future GW observations.

To improve upon the shortcomings of ‰p, we have introduced a new two-dimensional

e�ective precession spin vector, ‰̨‹, and have performed extensive studies comparing the

e�cacy of ‰̨‹ to that of ‰p in the strong-field regime using the NR surrogate wave-

form model NRSur7dq4 [160]. When analyzing individual h¸m-modes, in particular the

(2, ±1)-modes, we have found that ‰̨‹ performs significantly better than ‰p, but both

e�ective parameterisations yield comparable results for the quadrupolar (2, ±2)-modes.

Correspondingly, we also have found a significant improvement in the precessing strain

matches with the new mapping, from which we have concluded that the improved e�cacy

of ‰̨‹ over ‰p for the HMs has a significant e�ect on the accuracy of the overall strain,

demonstrating the importance of accurately modelling HMs in precessing systems. Fur-

thermore, we have found that ‰̨‹ performs better compared to ‰p in the equal-mass limit
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(see Figure 4.6). In this limit, the BH spins precess at the same rate, locked in orien-

tation relative to each other. The parameter ‰p, which is defined to mimic the average

rate of precession, performs knowingly poorly in this limit [174]; ‰̨‹, on the other hand,

is constructed such that it approximates the total in-plane spin of the fully precessing

system at some reference time, leading to a significantly improved behavior in the equal-

mass limit as anticipated from PN theory [14, 184]. As expected, we have found that ‰̨‹

performs increasingly better for larger mass ratios q & 2, where the spin on the smaller

BH becomes negligible and hence the approximation with a single in-plane spin becomes

more accurate. However, in the intermediate region between these two regimes, whilst

still a considerable improvement upon ‰p, we have found a small drop in accuracy at a

mass ratio of q ≥ 1.4, where two-spin e�ects are important but are not fully captured in

‰̨‹.

We have further demonstrated that the overall improvement relative to a ‰p-parameterisation

can be attributed to a more accurate replication of the precession dynamics itself when

using the ‰̨‹-parameterisation. Indeed, in the case where only one of the two objects has

nonzero in-plane spin components, the full dynamics are returned exactly, which is not

the case for ‰p. The accurate capture of the precession dynamics of particular interest as

a natural way for incorporating strong-field precession information into waveform mod-

els is through calibrating the precession dynamics itself, i.e. the rotation operator R of

Eq. (3.12) or, equivalently, the quaternions.

Additionally, we have also quantified how well the ‰̨‹-mapping is able to replicate the

final spin and recoil velocity of the remnant black hole. We have found a considerable

improvement in the accuracy with which we have replicated the azimuthal direction of

the remnant spin, and moderate improvements in the accuracy of the magnitude and

direction of the recoil velocity. This suggests our ‰̨‹-mapping is better able to replicate

the final direction of GW emission, compared to ‰p. Previous work has demonstrated that

the relative orientation of the in-plane spins at merger plays a crucial role in determining

the final state properties [185–188]. We have attributed the observed improvements to
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the (partial) incorporation of two-spin e�ects, which are crucial for determining the recoil

direction and velocity of the final BH.

Despite its significantly better performance in all areas, there are also caveats asso-

ciated with ‰̨‹: (i) For spin configurations with similar in-plane spin magnitudes, i.e.

S1‹ ƒ S2‹, we expect larger mismatches due to, by construction, the neglect of larger

in-plane spin-spin couplings. (ii) We have normalized ‰̨‹ such that the Kerr limit is not

violated. Consequently, for binaries with large spin magnitudes, ‰̨‹ will underestimate

the magnitude of the in-plane spin in the system. Due to the limited spin parameter

range of the surrogate, we have not been able to fully quantify the e�ect of this on the

performance of the mapping. (iii) The conditional placement of ‰̨‹ on either of the two

black holes introduces a discontinuity, in the sense that waveforms with ‰̨‹ placed on the

primary BH show slightly di�erent features from those with ‰̨‹ on the secondary BH. We

note that all of our ‰̨‹-mapped individual waveforms are physical and continuous, but

that a shift in phenomenological features can occur between binary configurations with

S1‹ = S2‹ + ‘ where ‰̨‹ is placed on the primary BH, against the same binary config-

uration with slightly smaller S1‹ = S2‹ ≠ ‘, where ‰̨‹ will be placed on the secondary

BH. With this in mind, we have tested the performance of ‰̨‹ without the conditional

placement. We have recalculated the sky-and-polarization-averaged strain matches shown

in Figure 4.10 with ‰̨‹ always placed upon the primary BH irrespective of whether the

precession is dominated by the primary or secondary BH, and indeed have found little

di�erence from the original ‰̨‹ strain match distribution, with the median mismatch in-

creasing minimally from 2 ◊ 10≠4 to 2.08 ◊ 10≠4. Additionally, we have recalculated the

white noise mode-by-mode matches of Eq. (4.12), again with ‰̨‹ always placed on the

primary BH. While we have found little di�erence between the (2, ±2)-mode results for

‰̨‹ with and without conditional placement, we have found that it has a marked e�ect on

the results for HMs. For example, in the (2, 1)-mode at mass ratio q = 3, the percentage of

mismatches below 0.99 using ‰̨‹ without conditional placement rises to 41.9%, compared

to just 9.1% if we include the conditional placement (under the ‰p-mapping the value is
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Figure 4.18: Cumulative histograms of white noise mode-by-mode matches for
the (2,2)-mode (top row) and the (2,1)-mode (bottom row) for mass ratios q = 1
(left column) and q = 3 (right column) for the same binaries as in Figure 4.6 with
the ‰̨‹-parameterisation (orange) and the ‰p-parameterisation (purple). The solid
outlines represent the parameterisations including conditional placement, whereas
the dashed lines show results when the e�ective spin is always placed on the primary
black hole. The e�ect of conditional placement is most noticeable at q = 3 in
the (2,1)-mode, where ‰̨‹ with conditional placement dramatically outperforms
other mappings. We also not that including conditional placement improves the
performance of both e�ective spin parameterisations in most cases, although this
improvement is negligible for the (2,2)-mode at mass ratio q = 3. The exception
to this is the ‰p-parameterisation for the (2,1)-mode at mass ratio q = 3, where
conditional placement worsens the match distribution for ‰p.

98.8%). We therefore have concluded that for HMs, it is crucial to accurately capture spin

asymmetries by placing the e�ective spin appropriately, to achieve an accurate mapped

waveform mode.

Lastly, we have also tested whether the improvements found by using ‰̨‹ over ‰p

are entirely due to the conditional placement, and whether an analogous conditional

placement of ‰p would have similar e�ects. In addition to the individual case shown
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in Fig. 4.3, in Fig. 4.18 we recalculate the white noise mode-by-mode matches shown

in Fig. 4.6, for both spin parameterisations ‰p and ‰̨‹, using (i) conditional placement

(solid) and (ii) placement always on the primary black hole (dashed). We note that in all

four panels, the best performance is obtained when conditionally placing ‰̨‹. The (2,2)-

mode at mass ratio q = 1 (top left) shows a small improvement in both parameterisations’

performance when conditional placement is included. The biggest improvement can be

seen in the (2,1)-mode at mass ratio q = 3 (bottom right), where a conditionally placed ‰̨‹

dramatically outperforms all other configurations, and neither a conditionally placed ‰p,

nor a ‰̨‹ a�xed to the primary would be able to achieve these improvements. Interestingly,

this panel also displays the only instance where conditional placement can worsen the

performance of ‰p. Therefore, we conclude that particularly for HMs at unequal-mass

ratios, to obtain the dramatic improvements we have seen, both the new e�ective spin ‰̨‹

and conditional placement are required.

An example of imposing this condition also on ‰p is shown in Figure 4.3 for the fiducial

binary, and we have indeed seen that the phenomenology is captured better. To quantify

the improvement in the performance of ‰p when imposing conditional placement, we have

recalculated the sky-and-polarization-averaged strain matches shown in Figure 4.10 with

an analogous conditional placement for ‰p. We have found only a small improvement

compared to the ‰p-mapping without conditional placement, with the median strain mis-

match improving from 4 ◊ 10≠3 to 3.4 ◊ 10≠3, compared to a median of 2 ◊ 10≠4 with ‰̨‹.

We have also recalculated the mode-by-mode white noise matches shown in Figure 4.6,

for both e�ective spin parameterisations, with and without conditional placement. These

results are shown in Figure 4.18. We see that for HMs at unequal-mass ratios, neither a

conditionally placed ‰p, nor ‰̨‹ always placed on the primary object, can replicate the

dramatic improvements we have previously seen in Figure 4.6. We therefore have sur-

mised that the improvements we have seen in the performance of ‰̨‹ over ‰p are due to

a combination of both the new parameterisation itself, and the conditional placement,

and that both are a necessary requirement to reproduce accurate precessing higher-order
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waveform modes.

Finally, we also note that the e�cacy of ‰̨‹ has not been investigated for the special

case of transitional precession, which leads to the tumbling of the total angular momentum

Ĵ when L ƒ S and L̂ = ≠Ŝ. As with all e�ective mapping that neglects some spin

contributions, however, we expect that the fine-tuned conditions needed for the occurrence

of the transitional precession phase are not preserved under the mapping.

In conclusion, our results have demonstrated that by introducing the two-dimensional

vector quantity ‰̨‹, which partially accounts for two-spin e�ects, we can accurately re-

produce the waveforms of fully precessing binaries, and in particular their HMs, in the

strong-field regime across a wide range of the BBH parameter space. The e�ective reduc-

tion of four in-plane spin components to two provides a clear and tractable path forward to

meaningfully incorporating precession e�ects in the strong-field regime into semi-analytic

waveform models with HMs, which we leave to future work.
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5. Accelerating Multimodal Gravitational

Waveform Models from Precessing Compact

Binaries with Artificial Neural Networks

This chapter is a reformatted version of work presented in Ref. [40], "Accelerating Multi-

modal Gravitational Waveforms from Precessing Compact Binaries with Artificial Neural

Networks", published in Phys. Rev. D 106.104029, and of which L. M. Thomas is the lead

author. The idea to produce a neural network surrogate model for a precessing, higher

mode waveform model was proposed by G. Pratten and P. Schmidt, building upon work

in Ref. [153] where a surrogate model for the quadrupolar mode of aligned-spin BBH

waveform model SEOBNRv4 was constructed using neural networks. All of the training,

validation and test datasets as described in Subsec. 5.2.1 were produced by L. M. Thomas,

including both the coprecessing frame mode and Euler angle data. She constructed the

coprecessing frame modes portion of the model, including the reduced bases and empir-

ical interpolants as described in Subsec. 5.2.2, and parameter space fitting with neural

networks as described in Subsec. 5.2.3. L. M. Thomas also produced the coprecessing

frame mode mismatches as shown in Figs. 5.6. G. Pratten constructed the Euler angle

portion of the model, including reduced bases, empirical interpolants and parameter space

fitting. He also produced the code to twist up the predicted coprecessing waveforms us-

ing the predicted Euler angles to produce the fully precessing strain, and calculated the

full precessing strain mismatches. G. Pratten also carried out the model timing tests in

Subsec. 5.3.2. The discussion and interpretation of our model results was a joint e�ort

between L. M. Thomas, G. Pratten and P. Schmidt. All the Figs. in this chapter were

produced by L. M. Thomas except for Figs. 5.5, 5.10, 5.11, 5.12 and 5.13. All three au-

thors contributed to the original text with thesis-specific expansions and additions made

by L. M. Thomas.

In Chapter 4, we discussed the problem of incorporating strong-field precession e�ects
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into semi-analytic waveform models through precessing NR calibration. We introduced a

new e�ective precession spin ‰̨‹, which replicates precessing morphology, notably in the

higher modes, with fewer spin degrees of freedom. In this chapter, we tackle an equally

important but contrasting aspect of waveform modelling, namely that time-domain semi-

analytic models, and in particular those which include more physical e�ects for com-

pleteness such as precession e�ects, can be very slow to evaluate. This means that in

practice, they can sometimes be unusable in real parameter estimation scenarios without

the use of reduced order modelling techniques. In this work we combine reduced-order

modelling with the power of artificial neural networks (ANNs) to build a computation-

ally vastly more e�cient surrogate model of the state-of-the-art inspiral-merger-ringdown

(IMR) waveform model SEOBNRv4PHM [48] that includes both spin-induced orbital pre-

cession [14] and higher-order modes beyond the quadrupole emission. While the e�cacy

of this approach has previously been demonstrated for the quadrupole ((2, 2)-) mode of

aligned-spin binary black holes (BBHs) [153, 154], here we demonstrate its feasibility for

the multimodal, precessing case. To achieve this, we decompose the SEOBNRv4PHM wave-

form model into eight components that describe the modes in a non-inertial, co-prcessing

coordinate frame and three components that encode the precession dynamics. Using

a combination of traditional surrogate modelling steps and neural networks to produce

parameter fits, we build a fast surrogate model for each component. Using extensive opti-

misation we determine an optimal network for each component, which allows us to speed

up the model evaluation by a factor of a few hundred on average on a CPU and even

further on a graphics processing units (GPU), demonstrating the e�cacy of this approach

for state-of-art multimodal waveforms with precession.

The chapter is organised as follows: First in Sec. 5.1 we introduce the methodology

behind this work, including a brief overview of artificial neural networks in Sec. 5.1.1, and

details of precessing waveform decomposition in Sec. 5.1.2. We then detail the construction

of the model in Sec. 5.2, first describing the training data upon which the model is built in

Sec. 5.2.1, the reduced basis and empirical interpolant construction in Sec. 5.2.2, and the
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neural networks for each of the model components in Sec. 5.2.3, both coprecessing modes

and Euler angles, putting these together to describe the full surrogate model construction

in Sec. 5.2.4. We then discuss the completed model in Sec. 5.3, both the accuracy of the

waveforms generated in Sec. 5.3.1 and the timing of the model evaluation in Sec. 5.3.2.

Finally, we summarise the model construction and results in Sec. 5.4, also discussing

caveats and further work.

5.1 Methodology

In this section, we provide details of the key ingredients required to build our ANN

surrogate model. As previously mentioned in Sec. 3.5, surrogate models are fast, accurate

approximations to an underlying (slower) model, over a chosen parameter space region.

After building a reduced basis and empirical interpolant, a parameter space fit needs to

be constructed to fit the reduced basis coe�cients at the EI nodes to the intrinsic binary

parameters. In this work, we will follow Ref. [153] and use ANNs to obtain the fitting

coe�cients. To construct the reduced bases and empirical interpolants we use the publicly

available Python package RomPy [152, 189].

In Subsec. 5.1.1 we now outline ANNs as relevant to this thesis, including their train-

ing and evaluation for use in a surrogate model, and then in Subsec. 5.1.2 we describe

the decomposition of our precessing waveform into components which we then model

separately.

5.1.1 Artificial Neural Networks

An artificial neural network (ANN) [190] is a computational system inspired by biological

neural networks which make up the brain. They have become widespread tools for a wide

variety of uses such as classification, clustering, function approximation or regression,

to name a few. Here we give only a brief overview as is relevant to this work, but for a

thorough overview of the subject we refer the reader to, eg. Ref. [191]. An ANN comprises
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a set of connected neurons (or nodes) between which information is to be passed, along

edges which connect them. The nodes are typically arranged in layers, such that the

input (a set of real numbers) traverses and is transformed through subsequent layers of

nodes before being output. This process of passing data through the ANN from input to

output is called forward propagation. If an ANN is fully connected, then each node in a

particular layer will have an edge which connects it to each node in the previous layer.

Each node will have an associated nonlinear activation function, which transforms the

input, and each node and edge will have weights which adjust as the network is trained.

To be more concrete, let us consider a particular neuron within the network with an

index j. Assuming the ANN is fully connected, this node will receive one real number

input from each node in the previous layer, xi. These inputs are multiplied by a set of

corresponding weights wij, where there is a di�erent set of weights for each node, and a

bias bj may be added such that the inputs become

xi ∆ xiwij + bj. (5.1)

The transformation thus far has been entirely linear, but now this value is passed to the

nonlinear activation function f(x) of the node. An example is the Softplus activation

function which is given by

f(x) = log(1 + exp(x)). (5.2)

Therefore the output of this node, xj is given by

xj = f(xiwij + bj). (5.3)

For best performance, an ANN must be trained, or equivalently, the weights and biases

must be fine-tuned. This process requires a set of training data, made up of inputs and

outputs to the neural network, where the inputs are passed through the network many

times, each iteration called a training epoch. With each epoch the outputs predicted
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by the neural network and the expected outputs from the training dataset are compared

using a metric (often the mean squared error) and the weights and biases updated using

an optimisation algorithm (optimiser). This is known as supervised training, because with

each epoch the predicted and expected outputs are compared to guide the neural network

learning process. The learning rate is a hyperparameter of the neural network which

controls how much the weights and biases are changed by the optimiser at the end of the

epoch. Therefore prior to training, the user chooses the neural network hyperparameters

such as the architecture, which include the number and size of layers, the activation

function, optimiser, and learning rate. A training set must then be specified and used

to train the ANN for a set number of epochs, or until the network reaches an accuracy

condition upon the output predictions.

5.1.2 Waveform Decomposition

As previously described in Chap. 2, binary black holes on quasi-spherical orbits span

a seven-dimensional (intrinsic) parameter space characterised by the mass ratio q =

m1/m2 Ø 1 and the (dimensionless) spin angular momenta ‰̨1 and ‰̨2. If the spin angular

momenta are misaligned with the direction of the instantaneous orbital angular momen-

tum L̂(t), then spin-induced precession occurs [14, 15]. This causes the orbital plane to

change its spatial orientation as the binary inspirals due to GW emission. This more

complex two-body dynamics leads to amplitude and phase modulations of the emitted

GW signal h(t; ⁄̨) and is also a source of the excitation of higher-order multipoles, h¸m (see

Eq. (3.3)), in the radiation field, which must be included to accurately describe the GW

signal. Due to the increased complexity, modelling the signal from precessing BBHs is a

challenging task but is accomplished as follows [14, 123, 128, 173]: The GW modes from

precessing binaries, hP
¸m(t; ⁄̨), can be conveniently decomposed into a simpler carrier signal

corresponding to a non-inertial coprecessing observer, hcoprec
¸m (t; ⁄̨), and a time-dependent

rotation operator R which encodes the orbital precession dynamics, as seen in Eq. (3.12).

As a first approximation, the coprecessing waveform modes can be approximated
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by aligned-spin modes [128, 173]. This simplifying approximation is made in many

of the state-of-the-art waveform models [48, 165, 168] and is a known source of mod-

elling errors [120]. Importantly, this approximation assumes a conjugate symmetry be-

tween the +m and ≠m modes, which no longer holds in the case of precessing bina-

ries [128, 131]. The waveform model we emulate here, SEOBNRv4PHM [48, 111], contains

the (2, ±2), (2, ±1), (3, ±3), (4, ±4) and (5, ±5) coprecessing modes defined in a time-

dependent coordinate frame that tracks L̂(t) (L-frame), and assumes conjugate mode

symmetry, i.e.,

hcoprec
¸,≠m (t; ⁄̨) = (≠1)¸hcoprecú

¸m (t; ⁄̨). (5.4)

Therefore, we only model the positive m≠modes in the coprecessing frame and obtain the

≠m-modes via Eq. (5.4). The coprecessing waveform modes are then further decomposed

into amplitude and phase,

hcoprec
¸m (t; ⁄̨) = A¸m(t; ⁄̨)ei„¸m(t;⁄̨). (5.5)

For the rotation operator we will use its SO(3) representation and model the three

Euler angles –(t; ⁄̨), —(t; ⁄̨) and “(t; ⁄̨) in an inertial Cartesian coordinate frame that is

aligned with the total angular momentum at the the initial time t0, i.e. J(t0) = ẑ, as

shown in Fig. 3.3, henceforth referred to as the J-frame.

Utilising this decomposition, we build (i) ANN surrogates for the amplitude and phase

of each coprecessing positive m≠mode contained in SEONBNRv4PHM (see Sec. 5.2.3) and

(ii) ANN surrogates for the three Euler angles (see Sec. 5.2.3).

5.2 Model

In this section we describe the construction of our surrogate model. As described in

Sec. 5.1.2, we model the coprecessing modes and Euler angles separately. We detail the

training dataset upon which the model is built in Sec. 5.2.1, as well as the validation
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Training data Number of
q |‰1| ◊1 [rad] „1 [rad]subset binaries

Sy
st

em
at

ic
al

ly
sa

m
pl

ed

Non-spinning 6
[1, 1.2, 1.4, [0] - -
1.6, 1.8, 2]

Spin-aligned 48
[1, 1.2, 1.4, [0.2, 0.4, [0, fi] -
1.6, 1.8, 2] 0.6, 0.8]

Precessing 720
[1, 1.2, 1.4, [0.2, 0.4, [fi/6, fi/3, [0, fi/3,
1.6, 1.8, 2] 0.6, 0.8] fi/2, 2fi/3, 2fi/3, fi,

5fi/6] 4fi/3, 5fi/3]

Randomly sampled 199, 226 U [1, 2] U [0, 0.8] U [0, fi] U [0, 2fi]

Table 5.1: Parameters of the 200, 000 binaries which span our training dataset.
The training space is split into two sectors: (i) a systematically sampled subset
which is included to ensure coverage of the parameter space boundaries; (ii) a
random but uniformly sampled subset. All spin parameters are quoted at a reference
frequency of 4Hz for the (2, 2)-mode for a binary with a total mass of 60M§

and test datasets. In Sec. 5.2.2 we describe the construction of the reduced bases and

empirical interpolants for each component, and in Secs. 5.2.3 and 5.2.3 we describe the

neutral network architecture and training for the coprecessing modes and Euler angles

respectively, assessing the accuracy of each component. We will then consider the accuracy

and speed of the complete model to produce a fully precessing signal in Sec. 5.3.

5.2.1 Training, Validation and Testing Data

Waveforms

Our waveform training dataset consists of 2 ◊ 105 multipolar SEOBNRv4PHM waveforms

with mass ratios q œ [1, 2] and arbitrarily oriented spin on the primary black hole with

magnitude |‰1| Æ 0.81; the secondary black hole is nonspinning. Both the coprecessing

waveform modes and the time-dependent Euler angles are obtained directly from the

1
We note that the spin orientation is defined relative to the orbital angular momentum L̂(t0) at the

initial time. Decomposed in Cartesian coordinates the spin vector is given by {‰1x, ‰1y, ‰1z}, where

‰1z = ‰̨1 · L̂(t0).
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SEOBNRv4PHM implementation in the public LIGO Algorithm Library LAL [49], mitigating

the need to perform any additional post-processing.

We first randomly sample 199, 226 binaries from the reduced parameter space, drawing

the parameters from distributions uniform in mass ratio q, uniform in spin magnitude |‰1|

and isotropic in spin orientation (◊1, „1). We supplement these binaries with an additional

774 systematically chosen points to accurately sample the boundaries. The parameters

of these systematically chosen binaries are listed in Tab. 5.1 and a visualisation of the

training set can be found in Fig. 5.1, which shows the distribution of the 2◊105 waveform

training dataset, plotted in the space of primary spin components and coloured by number

density.
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Figure 5.1: Visualisation of the spin parameters of the entire training dataset
coloured by number density.

We initially generate waveforms such that the (2, 2)-mode of a binary with a total mass

of 60 M§ starts from an initial frequency of 4Hz. In geometrised units this corresponds

to an approximate length of ≥ 2 ◊ 105M before merger, though the duration varies due

to mass ratio and inspiral spin [76, 192]. The modes are then aligned such that the peak

of the quadrature of all modes occurs at t = 0M . Each waveform is first generated on a

uniform time grid with a time spacing �t = 0.1M, and then reinterpolated onto a non-

uniform grid which is 20 times coarser in the early inspiral, but retains the 0.1M spacing

in the later-inspiral, merger and ringdown. The waveforms are of varying length pre- and
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post-merger, and so have di�erent time grids of the same resolution, but are required

to be of equal length and evaluated upon the same times in order to build the reduced

bases. As a data preprocessing step we choose the waveform with the shortest length

pre-merger, and reinterpolate all waveforms onto this common time grid. We then choose

the waveform with the shortest post-merger signal and truncate all waveforms such that

the final time matches that of the shortest. We note that this truncation is less than 10M

for all waveforms, and contains a negligible amount of the ringdown signal in all cases.

For computational reasons, we truncate all waveforms to be of length 104M pre-merger.

Therefore all waveforms start at 104M before the peak, and include 110M of post-merger

signal. We note that due to this truncation, the spin parameters are specified at the initial

time t ≥ ≠2 ◊ 105M and not at the start of the waveforms. Since the spins in precessing

binaries evolve with time, it is necessary to define the reference time or frequency at which

they are defined. Being able to do this for some arbitrary time/frequency requires either

code (see e.g. [114]) or additional NNs that track the spin evolution. We leave building

neural networks for the spin evolution for future work. The truncated waveforms are

then re-interpolated onto a uniform grid with spacing �t = 1M in order to build the

reduced bases and empirical interpolants, as we found that the finer 0.1M spacing was

not required.

We note that when constructing the models for the coprecessing odd-m mode ampli-

tudes and phases, not all of the 2 ◊ 105 training waveforms are used. We first remove

training points where there is very little spin or mass asymmetry in the system, as we ex-

pect the odd-m amplitudes to be small and therefore noisy in the true SEOBNRv4PHM data.

We impose a cut of q > 1.01, ‰1z > 10≠2, which removes 109 points from the training set.

Next, we remove any training data which show signs of (unphysical) discontinuities in the

phase, possibly due to next-to-quasi-circular corrections in the SEOBNRv4PHM data. For

the coprecessing (2, 1)-mode, this amounts to 11, 091 points, and 198 for the (3, 3)-mode.

Therefore, for the (2, 1)-mode amplitude and phase, the total training dataset is 188, 800

waveforms, whereas for the (3, 3)-mode it is 199, 693.
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To validate our neural networks as they train, we also produce a validation dataset of

104 waveforms which covers the same parameter space as the training set. We sample this

validation set uniformly is mass ratio, primary spin magnitude, spin tilt and azimuthal

angles. All preprocessing steps for the validation data are the same as for the training

data: we interpolate these waveforms onto the same common time grid with an equivalent

spacing. For the coprecessing odd-m modes, we remove 4 points with little asymmetry,

553 which show signs of phase discontinuity in the (2, 1)-mode phase, and 9 in the (3, 3)-

mode. This equates to a validation set size of 9, 443 for the coprecessing (2, 1)-mode, and

9, 987 for the (3, 3)-mode.

Lastly, we also produce a separate test dataset of 104 waveforms in exactly the same

way as the validation set, which is completely independent and unseen by the neural

networks. Of this dataset, 3 points are removed for the coprecessing odd-m modes due

to little symmetry, 672 due to discontinuities in the (2, 1)-phase, and 13 due to the (3, 3)-

phase. Therefore for the (2, 1)-mode amplitude and phase, the test set is of size 9325, and

for the (3, 3)-mode it is 9, 984.

Euler Angles

For the Euler angles, we use the same dataset of 2 ◊ 105 waveforms as described above.

However, as the Euler angles become ill defined in the non-precessing limit, we re-

strict our training data to only those binaries with an initial in-plane spin magnitude

|‰1,‹| =
Ò

‰2
1x + ‰2

1y > 10≠3. In contrast to above, we decompose this initial dataset into

a training dataset of 1.8 ◊ 105 binaries and a validation dataset of 18, 634 binaries. As no

hyperparameter optimization was performed on the Euler angle networks, the validation

dataset is never used to train the network or to inform the network hyperparameters. We

therefore treat the validation dataset as being e�ectively independent. The data condi-

tioning is identical to the procedure described above for the waveform modes, with the

Euler angles being evaluated on a uniform grid with spacing �t = 1M and a length of

104M .
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5.2.2 Reduced Basis and Empirical Interpolant

We construct our reduced bases and empirical interpolants following the algorithm de-

scribed in Sec.3.5. We separate each coprecessing mode into its constituent amplitude

and phase, and construct a reduced basis, empirical interpolant and neural network for

each component. We also construct a reduced basis and empirical interpolant for each

Euler angle separately, leading to a total of 11 di�erent components to make up the full

precessing signal2. When discussing the construction and evaluation of these models, we

use the following terminology: X describes the input parameters of the model, i.e. the

four intrinsic parameters of the binary X = ⁄̨ = {q, ‰1x, ‰1y, ‰1z}; Y is an n-dimensional

vector that denotes the fitting coe�cients, for example the mode amplitudes in Eq. (3.29).

We choose to condition the data before building our reduced bases as we found this

to be beneficial for the neural network performance: For the coprecessing modes we

use a scikit-learn [193] Standard scaler on the X data and a MinMax scaler on the

Y data for the phases as we found that without scaling the greedy algorithm for the

coprecessing (2, 1)- and (3, 3)-mode phases was unable to converge and produce a reduced

basis to within the greedy tolerance accuracy. We also remove the initial phase at time

t = ≠10, 000M , such that all phase data begin at zero. We note that we do not explicitly

model these initial phases, and leave this to future work.

In contrast, we find no major benefit to scaling the X data for the Euler angles and

the amplitude Y data for the coprecessing modes. For – and “, we apply a MinMax scaler

to the Y data but we do not apply any preprocessing to the Y data for —. A summary of

the data conditioning can be found in Tab. 5.2. Tab. 5.3 shows the median and maximum

mismatches for the reduced basis and empirical interpolant representations for each of the

11 components of the model, across both the training and validation datasets.

To build the reduced bases, we use an absolute greedy error tolerance of ‡ = 10≠6

for all components of the coprecessing modes, except for the phases of the (2, 1) and

2
The odd-m modes are obtained via conjugation and hence do not need to be modelled separately but

are included in the full precessing signal.
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(¸, m) Component Training Greedy Basis
Set Size Tolerance Size

(2, 2) Amplitude 200, 000 10≠6 23
(2, 2) Phase 10≠6 29
(2, 1) Amplitude 188, 800 10≠6 26
(2, 1) Phase 10≠8 40
(3, 3) Amplitude 199, 693 10≠6 26
(4, 4) Phase 10≠3 46
(4, 4) Amplitude 200, 000 10≠6 4
(4, 4) Phase 10≠6 29

Euler Angle
– 180,000 7 ◊ 10≠9 18
— 180,000 6 ◊ 10≠7 19
“ 180,000 7 ◊ 10≠9 18

Table 5.2: Greedy tolerances and reduced basis sizes for the amplitude and phase
of each mode, as well as the Euler angles. For phases, MinMax scaling was used on
the Y data. For both amplitudes and phases, standard scaling was used on the X
data. For the Euler angles, MinMax scaling was used on the Y-data for – and “.

(¸, m) Component M̄
max,train
f M̄

median,train
f M̄

max,val
f M̄

median,val
f

(2, 2) Amplitude 1.1 ◊ 10≠5 5.0 ◊ 10≠7 1.4 ◊ 10≠5 6.0 ◊ 10≠7
(2, 2) Phase
(2, 1) Amplitude 3.2 ◊ 10≠3 1.8 ◊ 10≠6 3.4 ◊ 10≠4 1.7 ◊ 10≠6
(2, 1) Phase
(3, 3) Amplitude 1.8 ◊ 10≠2 3.0 ◊ 10≠4 2.7 ◊ 10≠2 3.1 ◊ 10≠4
(3, 3) Phase
(4, 4) Amplitude 1.6 ◊ 10≠4 4.0 ◊ 10≠5 1.9 ◊ 10≠4 4.1 ◊ 10≠5
(4, 4) Phase

Euler Angle M̄
max,train
t M̄

median,train
t M̄

max,val
t M̄

median,val
t

– 3.0 ◊ 10≠5 1.4 ◊ 10≠9 2.6 ◊ 10≠6 1.4 ◊ 10≠9

— 4.1 ◊ 10≠6 1.3 ◊ 10≠6 4.4 ◊ 10≠6 1.3 ◊ 10≠7

“ 4.2 ◊ 10≠5 1.5 ◊ 10≠9 1.0 ◊ 10≠6 1.5 ◊ 10≠9

Table 5.3: Maximum and median training and validation dataset mismatches for
the amplitude and phase of each mode, as well as the Euler angles. For phases,
MinMax scaling was used on the Y data. For both amplitudes and phases, standard
scaling was used on the X data. For the Euler angles, MinMax scaling was used on
the Y-data for – and “ and we use the time-domain mismatch M̄t as our metric.

(3, 3)-modes. For the (2, 1)-mode, we decreased the greedy tolerance to 10≠8 as we found

a significant tail of poor mismatches against the reduced basis representation with a
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tolerance of 10≠6. Conversely, for the (3, 3)-mode, we reduced the tolerance to 10≠3 in

order to achieve a reduced basis of manageable size. The tolerances and the sizes of the

resulting reduced bases (and therefore the number of empirical interpolation nodes) are

given in the fourth and fifth column of Table II.

To assess the accuracy of the coprecessing (¸, m)-modes reconstructed from their

reduced basis representations in amplitude and phase, we compute frequency-domain

white noise mode-by-mode mismatches M̄f , defined by Eq. (2.74) against the original

SEOBNRv4PHM data. Columns 6-9 of Table II show the maximum and median mismatch

across the full training and validation datasets for each coprecessing mode, noting that

the validation data is not used in the construction of the reduced bases. Generally, we

find that the odd-m modes are less accurately represented than the even-m modes and

that that their bases sizes are larger. This is perhaps not too surprising as the odd-m

modes are (i) subdominant and (ii) contain more structure, therefore requiring more basis

elements to achieve the same representation accuracy [157].

Similarly, we compute time-domain mismatches M̄t, defined by Eq. (2.78) between

the original SEOBNRv4PHM data Euler angles, and those reconstructed from the reduced

basis projections. We do this across both the training and validation datasets, and state

the median and maximum values for each dataset in columns 5-8 in the bottom half of

Table II. We see that for both the coprecessing modes and the Euler angles, the median

mismatch across both datasets is comparable to the greedy tolerance used to create the

reduced basis (for the mode mismatches, it is limited by whichever greedy tolerance is

larger, amplitude or phase).

Lastly, the similar mismatches for the coprecessing modes across both the training

dataset, which was used to construct the bases, and the validation dataset, which was

previously unseen, suggests that the reduced bases are large enough to accurately represent

waveforms across our chosen parameter space. We note that for the Euler angles, the

mismatches (both median and maximum) over the validation dataset can be up to an order

of magnitude smaller than over the training dataset. This suggests that the validation
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dataset is not large enough to accurately represent the full distribution over the entire

parameter space, especially for the — angle which is typically much flatter than either –

or “.

5.2.3 Parameter Space Fits with Artificial Neural Networks

We now describe the architecture, training and optimization of our neural networks for the

fitting coe�cients of the coprecessing modes each decomposed into amplitude and phase

and Euler angles, and discuss the achieved accuracy for each of component separately. We

build the neural network for each model component using Tensorflow [194] and Keras

[195]. Specifically, we use the Sequential model with fully-connected Dense layers. A

summary of the final neural network architectures for each coprecessing mode and the

Euler angles is given in Table III. As an example, a graphical representation of the neural

network architecture for the coprecessing (2, 2)-mode phase is shown in Fig. 5.2. The

neural network is shown by the red and teal rectangles, where the red ones represent

the four fully-connected hidden layers, each with 320 neurons for this component and

a Softplus activation function, and the teal ones show the input and output layers: 4

neurons for the intrinsic parameters X , and 29 for the output layer as this is the number

of empirical time nodes Ti for this component. The output can then be reinterpolated

onto the full uniform time grid, and inverse scaled to produce the full coprecessing (2, 2)-

mode phase „22. For this particular component we have applied scaling to the X and Y

data, as shown by the blue rectangles. For all ANNs we use 4 input neurons, but the

detailed architecture is adapted for each component.

The size of neural network di�ers between the coprecessing modes and Euler angles,

as shown in Table III. Additionally, the coprecessing amplitudes will not undergo inverse

MinMax scaling as we did not scale the amplitude training data in our model construction,

and for the Euler angles the X data is not scaled. Lastly, we note that the size of the

neural network output layer will vary, as it is equal to the number of empirical time nodes

for each model component.
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Figure 5.2: Graphical representation of the ANN architecture for the coprecess-
ing (2, 2)-mode phase „22(t; ⁄̨), as an example. This neural network takes in the
Standard scaled intrinsic binary parameters X as input, and outputs the MinMax
scaled Y , a prediction of the coprecessing (2, 2)-mode phase at the empirical time
nodes. This output vector may then be reinterpolated onto the full uniform time
grid using the empirical interpolant, and inverse MinMax scaled to produce the full
coprecessing mode phase „22.
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(¸, m)- Euler
Amplitude & Phase Angles

X-data conditioning Standard None

Y-data conditioning None (Amplitude) MinMax (–, “)
MinMax (Phase) None (—)

Number of input neurons 4 4
Number of layers 4 9
Neurons per layer 320 128

Optimiser Adam AdaMax
Activation function Softplus Softplus

Mini-batch size 64 512
Number of training epochs 10, 000 5000

Table 5.4: Details of the final neural network architecture for each component.
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Figure 5.3: Training and validation losses for the (2, 2)- (left) and (2, 1)-mode
(right), for both amplitude and phase. The loss shown is the mean squared error
(MSE) as a function of training epochs. Also shown in both panels is the learning
rate (red), which changes as a function of epoch as defined by Eq. (5.7).

Coprecessing Modes

When training our coprecessing mode neural networks, we use a mean squared error

(MSE) loss function. This quantity can be computed over either the training dataset

to monitor training progress, or the validation dataset as a control to check for over- or

under-fitting. It is defined as

MSE = 1
N

Nÿ

i=1

---y̨ true
i ≠ y̨ pred

i

---
2

, (5.6)
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where y̨ pred
i is the output from the neural network, y̨ true

i is the true SEOBNRv4PHM data,

scaled accordingly if required and at the appropriate empirical time nodes, and N is the

number of points in either the training or validation set.

The final neural network architecture for the coprecessing modes is determined through

optimisation via the hyperparameter sampling package Hyperopt [196]. We parse choices

for neural network hyperparameters, as well as a maximum number of neural network

evaluations. The package then creates and trains neural networks with hyperparameters

drawn from these choices, and returns the best performing hyperparameters based on

a metric, which we specify to be the validation loss upon completion of training. The

choices for optimisable hyperparameters are as follows: activation function (Relu [197,

198], Elu [199], Tanh, Softmax, Softplus, Softsign [200]); optimiser (Adam [201], Nadam

[202], Adamax [201], Adadelta [203]), number of training epochs (1000, 2000, 10000); and

mini-batch size (32, 64, 128). We refer the reader to [204] for a systematic overview of

activation functions and [205] for an overview of gradient descent optimization algorithms.

We also compare three sizes of neural network: 4 layers with 320 neurons per layer; 9

layers with 128 neurons per layer; and 4 layers where the number of neurons per layer

is the next largest power of two from the reduced basis size. We find slightly improved

performance with shallower, wider architectures, and so use the 4 layer, 320 neurons

per layer architecture for the final networks. We also do not use dropout in our final

configurations as we find this can create a lack of stability in training leading to higher

mismatches. Our final optimal neural network architecture is detailed in Table III.

Additionally, we use an adaptive learning rate as in Ref. [153] in order to achieve faster

convergence and prevent overshooting of the optimal trained weights. Our learning rate

takes the form

·i = (·init ≠ ·final)/(1 + RÂi/�iÊ) + ·final, (5.7)

where ·i is the learning rate at epoch i, the initial learning rate ·init = 10≠3, the final

learning rate ·init = 10≠5, the decay rate R = 10, and our training epoch interval �i =

2000. Thus our learning rate exhibits step-wise changes, decreasing every 2, 000 epochs.
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Figure 5.4: Training and validation losses for the (3, 3)- (left) and (4, 4) (right)
-modes, both amplitude and phase. The loss shown is the mean squared error
(MSE) as a function of epochs trained. Also shown in both panels is the learning
rate, which changes as a function of epoch as defined by Eq. (5.7).

We use a mean squared error (MSE) as the loss metric, losses on both the training and

validation datasets for the (2, 2) and (2, 1)-mode amplitudes and phases are shown in

Fig. 5.3, as well as the variable learning rate. We see that for the (2, 2)-mode (left panel),

both the amplitude and phase loss plateau around 10≠6 after ≥ 100 epochs of training,

and for the (2, 1)-mode (right panel) the phase reaches a similar loss plateau as the (2, 2)-

mode, however, the amplitude continues to improve to a loss value of ≥ 10≠8. We also note

that for all components, the training and validation losses are very comparable: a sign

that we are not over-fitting in our training procedure, which would cause the validation

loss to increase as the training loss continues to decrease with more training epochs. We

note that in order to assess under-fitting, we would need to train the network until the

training and validation loss reach a global minimum, which could take many more training

epochs than shown here. The training and validation losses for the (3, 3)- and (4, 4)-modes

are shown in Fig. 5.4, and we note that similarly to the (2, 1)-mode amplitude as seen

in Fig. 5.3, the amplitude losses for the (3, 3)- and (4, 4)-modes evolve to a minimum of

around 10≠8 at the end of training, and the phases to around 10≠6.
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Euler Angles

In contrast to the architecture used for the coprecessing modes, for the Euler angles we

use a network that is narrower and deeper consisting of 9 layers with 128 neurons per

layer. We found that the Softplus activation function coupled with the Adamax optimizer

produced robust results at the desired level of accuracy, though we did not perform the

more exhaustive hyperparameter optimization used in the construction of the networks for

the coprecessing modes. The networks are trained for 5000 epochs using a mean squared

error loss function, as defined in Eq. (5.6). For the learning rate, we use an initial value

of 10≠2 and use an adaptive scheme that reduces the learning rate when the loss has

stopped improving, as implemented by the ReduceLROnPlateau callback in Keras . We

found no significant improvement when exploring the use of dropout regularization or Lp

regularizers3, so do not include them in the final model.

In addition to the default network above, we also constructed a neural network for

the residuals between the input empirical interpolation coe�cients and the default neural

network predictions (see also [154]), ỹk = ytrue
k ≠ ypred

k . This allows us to reconstruct

the empirical interpolation coe�cients using a two step procedure: we first evaluate the

default neural network then we correct for any residual errors using the second network.

However, we found this gave no noticeable improvement in accuracy. Due to the additional

computational cost associated to the network evaluation, we opt not to use the residuals

approach in the final model.

5.2.4 Complete Surrogate Model

Once the reduced bases and empirical interpolants are built and the neural networks

have been trained, we have a total of 11 surrogate models for the di�erent components

that constitute the complete precessing model, SEOBNN_v4PHM_4dq2 : The four coprecess-

ing modes split into amplitudes and phases, and the three Euler angles. In Fig. 5.5

3
The Lp

norm is defined by ÎLÎp =
q

n (|xn|
p
)
1/p

and we applied the regularization penalty to both

the kernel and bias using the L1L2 Class in Keras .

125



5. WAVEFORM MODELS WITH NEURAL NETWORKS

we show an example for a fiducial binary with parameters ⁄̨ = {q, ‰1x, ‰1y, ‰1z} =

{1.86, 0.045, ≠0.283, 0.274}, i.e. a moderately precessing binary with a moderate unequal

mass ratio. We note that this particular binary was not in our training or validation

datasets. The top left panel shows the mode amplitudes as predicted by the surrogate for

each coprecessing mode, the top right panel the corresponding phases. The SEOBNRv4PHM

data are shown by the dashed curves in all panels. The middle panel shows the final

surrogate models for the Euler angles. We note the excellent agreement between the true

data and predictions, including around merger at t = 0M . In the bottom panel we show

the time-domain strain (Eq. (3.3)) obtained by combining the surrogate models (plus the

conjugate modes) following the description in Eq. (3.12). We note, however, that we

do not explicitly model the relative phase o�sets between the coprecessing modes, which

were incorporated manually from the true SEOBNRv4PHM data in the construction of the

precessing strain. We leave the modelling of these relative phase o�sets to future work.

Having seen the excellent agreement between prediction and true SEOBNRv4PHM data

for a single fiducial binary, we now quantify the accuracy the surrogate models for each

component across the parameter space.

For each coprecessing mode we compute white noise frequency-domain mismatches

M̄f between the true SEOBNRv4PHM coprecessing waveform modes and the surrogate

predictions for the test dataset, which consists of 104 waveforms that were not part of

our training space TM (see Sec. 5.2.1). We limit our mismatch integration to start at

fmin = 20 Hz and fix the total mass to 44M§, which completely covers also the longest

waveforms in our test set. The mismatch result for each of the four coprecessing modes

is shown in in Fig. 5.6. For each of the four coprecessing modes we find that the bulk

of mismatches is less than 10≠2 or 1%, with 4.6% greater than this value for the (2, 1)-

mode, 0.8% for the (3, 3)-mode, and 2.6% for the (4, 4)-mode. For the (2, 2)-mode we find

that it is less than 10≠3 with only 3.3% of mismatches greater than this, with a median

mismatch of ≥ 3 ◊ 10≠4. We find comparable performance for each of the three higher

modes considered, with a median mismatch of ≥ 10≠3, however we do note that there are
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Figure 5.5: Top panel: Comparison of the coprecessing mode amplitudes (left)
and phases (right) predicted by the surrogates (solid coloured lines) against
the SEOBNRv4PHM data (dashed grey) for a fiducial binary with parameters
{q, ‰1x, ‰1y, ‰1z} = {1.86, 0.045, ≠0.283, 0.274}, where the Cartesian spin param-
eters are specified at a (2, 2)-mode reference frequency of 4 Hz. The merger at
t = 0M is indicated by the grey vertical line. Middle panel: Comparison of the
Euler angles predicted by the neural network (blue) against the SEOBNRv4PHM data
(red) for the fiducial binary. Bottom panel: The time-domain strain in the J-frame
for our fiducial binary at an inclination of ◊ = fi/3. We include all modes up to
¸ Æ 4.
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Figure 5.6: White noise mismatches between the SEOBNRv4PHM -generated copre-
cessing frame mode data and and the neural network-predicted coprecessing mode,
for each of the four modes across the 10, 000 binary test set. Mismatch calculations
start from an fmin = 20Hz for a total mass of 44M§. Also shown for each copre-
cessing mode are the median mismatch (black) and 90% intervals (black dashed).

tails of higher mismatches in the odd m-modes.

Histograms of the mismatches for the coprecessing (2, 2) and (2, 1)-modes at di�erent

total masses can be found in Fig. 5.7. We choose a representative sample of four total

masses Mtot œ {44, 65, 85, 125}M§ and recompute mismatches in the same way as shown

in Fig. 5.6, from a low frequency cuto� of 20 Hz each time, over the 10, 000 binary test set,

for each of the (2, 2)- (left) and (2, 1)-modes. We find that the change in total mass makes

little di�erence in both cases, and that in fact a higher total mass than 44M§ slightly

improves the (2, 1)-mode mismatches, as may be expected since the higher total mass is

e�ectively a decrease in waveform length. Therefore, the results in Fig. 5.6 represents the

worst case scenario.

To see where in parameter space the worst mismatches lie, particularly the high mis-

match tails in the odd m-modes, we take the worst 5% for each coprecessing mode and

plot them in the space of mass ratio q against ‰1‹, with the (2, 2)- and (2, 1)-modes shown

in Fig. 5.8. We see that for the (2, 2)-mode, the highest mismatches lie broadly evenly

across the parameter space, although with fewer high mismatches at low in-plane spin
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Figure 5.7: White noise mismatches between the SEOBNRv4PHM -generated copre-
cessing frame mode data and and the neural network-predicted coprecessing mode,
for the (2, 2) (left) and the (2, 1)-mode (right), as computed in Fig. 5.6 but for a
range of di�erent total masses Mtot = [44, 65, 85, 125] M§. Mismatch calculations
start from an fmin = 20Hz and are computed across the 10, 000 binary test set.

values. For the odd (2, 1)-mode, however, the worst mismatches lie close to equal mass

and at low in-plane spin values. In this region of parameter space, we expect the odd

m-modes to be heavily suppressed, and so training data may be considerably more noisy,

therefore leading to worse mismatches. It also means that when combining the modes into

a full precessing strain, the contribution of these modes to the full signal is diminished

and so will not have as much impact on the accuracy of the full waveform.

We also show in Fig. 5.9 the worst 5% of mismatches M̄f for the (3, 3)- (left) and

(4, 4)- (right) modes. We see that for the (3, 3)-mode, similarly to the (2, 1)-mode, the

worst mismatches appear around equal mass and less in-plane spin where there is less

asymmetry in the system and so these modes are heavily suppressed in the full precessing

strain. In contrast, and similarly to the (2, 2)-mode, the (4, 4)-mode exhibits lower mis-

matches overall, and more evenly spread across the parameter space, although the worst

mismatches tend to be at more unequal mass ratios and larger in-plane spins.

For the Euler angles, we use time-domain mismatches, see Eq. (2.78), as the main met-

ric to quantify the accuracy of the surrogate prediction. We show the mismatches between

the SEOBNRv4PHM data and the surrogate models for the Euler angles in Fig. 5.10. We

also demonstrate that the accuracy of the residual surrogate model outlined in Sec. 5.2.3
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Figure 5.8: Worst 5% of test dataset mismatches for the coprecessing (2, 2)- (top),
(2, 1)-modes (bottom), shown in parameter space of mass ratio q against in-plane
spin magnitude |‰1‹|. We note that the highest mismatches for the (2, 2)-mode
are scattered across much of this space, although with the worst mismatches at
larger mass ratio and spin magnitude. In contrast, the worst mismatches for the
(2, 1)-mode lie in the region close to equal-mass where there is less asymmetry in
the system and so this particular mode is heavily suppressed.
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Figure 5.9: Worst 5% of test dataset mismatches M̄f for the (3, 3)- (left) and (4, 4)
(right), modes, shown in parameter space of mass ratio and in-plane spin magnitude,
and coloured by mismatch. We note that the highest mismatches for the (4, 4)-
mode are scattered across much of this space, although with the worst mismatches
at larger mass ratio and spin magnitude. In contrast, the worst mismatches for the
(3, 4)-mode lie in the region close to equal-mass where there is less asymmetry in
the system and so this particular mode is heavily suppressed.

o�ers no noticeable benefit with mismatches in broad agreement with our default model.

Finally, whilst we find it convenient to work with the SO(3) representation of the

Euler angles, an appealing alternative approach is to parameterize the rotation group by

a set of unit quaternions [125, 206]. Fundamentally, the quaternions still describe the time-

dependent rotation of the frame but are endowed with a number of beneficial mathematical

properties, such as the singularities that can occur in the Euler angle formalism. For the

reduced parameter space considered here, we found no noticeable benefit to adopting the

quaternion framework and opted to work with Euler angles out of simplicity. We leave a

more detailed investigation of the wider parameter space to future work.

5.3 Model Evaluation

5.3.1 Waveform Accuracy

The observed GW signal from single-spin precessing binary black holes depends on 12

parameters: the component masses mi, the dimensionless spin ‰̨1(t), the direction from the

source frame to the observer (ÿ, „0), the polarization Â0, time of arrival t, the luminosity
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Figure 5.10: Time-domain mismatches for the surrogate model for the Euler
angles against the training data. For –, we show mismatches for the surrogate when
using empirical coe�cients predicted by the default network and when predicted by
a two stage network that includes a fit to the residuals from the default network.
We find no notable improvement in fitting the residuals.

distance dL and the sky location (◊, „). Here we neglect the sky location and write the

real-valued detector response hr(t) as

hr(t) = h+(t) cos(2Â) + h◊(t) sin(2Â). (5.8)

where h(t) = h+(t) ≠ ih◊(t). We are now interested in validating the accuracy of our

surrogate model, SEOBNN_v4PHM_4dq2 , against the slow waveform model SEOBNRv4PHM

. To do so, we calculate strain mismatches optimized over {Â, Ï, t}, as these quantities

are not astrophysically relevant. We follow the approaches detailed in [48, 168, 174, 192]

and numerically optimize over the phase „ and analytically maximize over the template

polarization Â and relative time shift t,

MŸ(„s
0, Âs

0) = max
th
0

,„h
0

,Âh
0

Èĥr, ŝr(„s
0, Âs

0)Íf , (5.9)
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where hr denotes the template waveform, generated by our SEOBNN_v4PHM_4dq2 surro-

gate, and sr is the signal waveform, taken to be SEOBNRv4PHM . We use the index Ÿ to

distinguish the match optimised over the polarisation angle from Eq. (2.74). Finally, we

average the match by weighting each waveform (indexed by i) by its optimal signal-to-

noise ratio fl to account for the likelihood that the signal would have been detected. This

allows us to define an orientation-averaged match as [192] (see Eq. (4.16))

Mw =
Aq

i M
3
Ÿ,i fl3

iq
i fl3

i

B1/3

, (5.10)

and the concomitant orientation-averaged mismatch M̄w = 1 ≠ Mw. For the match

calculation, we assume a lower cuto� frequency of 20Hz and use the projected PSD for

Advanced LIGO in the upcoming fourth observing run (O4) [207], consisting of the Ad-

vanced LIGO and Virgo detectors as well as KAGRA. We take the masses to be uniformly

distributed between 50M§ and 200M§ and the orientation angles to be isotropic on the

unit sphere. The mass ratio, spin magnitude and spin orientation are as described in

Table I. We reiterate that to construct the full precessing strain from our ANN waveform

model, here we use the true SEOBNRv4PHM relative phase o�sets between the coprecessing

modes. The resulting mismatches are shown in Fig. 5.11 using all ¸ Æ 4 modes in the

inertial J-frame as per Eq. (3.12). We show mismatches against the training dataset, used

to construct our ANN waveform model, and the independent testing dataset to which the

model has never been exposed. For both datasets we find excellent agreement and find a

median mismatch of 1.9 ◊ 10≠4. The 5th and 95th percentiles for the mismatches against

the training dataset are 5.8 ◊ 10≠5 and 6.5 ◊ 10≠4 respectively. The mismatch errors here

are approximately an order of magnitude below the anticipated error of SEOBNRv4PHM

against precessing numerical relativity simulations [48]. We find that the error of our

model against the input data is competitive with the accuracy provided by other surro-
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gate models, e.g. [89, 160].
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Figure 5.11: Orientation averaged mismatches for SEOBNRv4PHM against
SEOBNN_v4PHM_4dq2 for all Æ 4 modes in the J-frame. We show 9 ◊ 104 binaries
randomly drawn from the training (blue) dataset and 1 ◊ 104 binaries randomly
drawn from the independent testing (green) dataset, which the neural network has
never been exposed to. We find excellent agreement irrespective of the dataset.

5.3.2 Timing

In order to test the e�ciency of our surrogate model, we developed two interfaces. The

first interface is built exclusively within the NumPy framework. The second interface uses

the Tensorflow framework to provide GPU acceleration. When run on a single CPU,

we find broad parity between the computational e�ciency of the two implementations.

However, when run on a GPU, the implementation in Tensorflow allows for significant

computational speedup, as discussed below.

The typical evaluation time for a single Euler angle surrogate model is on the order

of 250µs. As a reminder, this includes the computational cost of producing a single

prediction for the empirical interpolation coe�cients from the neural network as well

as the multiplication by the empirical interpolation matrix. The amplitude and phase

surrogate models are marginally slower such that each waveform mode h¸m = A¸me≠i„¸m
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takes ≥ 925µs to generate.

In required model components are constructed from 11 individual surrogate models:

3 Euler angles and 4 waveform modes plus their conjugates. To evaluate all 3 Euler

angles takes ≥ 750µs and to evaluate the 4 waveform mode surrogates takes ≥ 3.7ms.

Array conjugation is a significantly cheaper operation requiring only ≥ 10µs per array.

Evaluation of the waveform modes is the single most expensive operation in our model.

Next we need to evaluate the Wigner-D matrices, D¸
mmÕ(–, —, “), in order to per-

form the time-dependent rotations. This is the second most expensive operation in

SEOBNN_v4PHM_4dq2 . In order to mitigate against the computational cost, we can per-

form a series of optimizations, such as pre-caching of numerical coe�cients. This allows

us to significantly reduce the cost of evaluating the Wigner-D matrices to ≥ 5.5ms. Fur-

ther optimization could be achieved through the use of interpolating non-uniform grids

or pre-compilation in C. We leave such optimizations to the future. Performing the time-

dependent rotations of the waveform modes from the L-frame to the J-frame is relatively

e�cient, requiring only ≥ 2ms.

Altogether, we find that the typical waveform generation cost for a signal cover-

ing the surrogate length of 10, 000M is on the order of 18ms on a single CPU with

SEOBNN_v4PHM_4dq2 . This is on average O(102) times faster than the underlying SEOBNRv4PHM

model, which takes ≥ 3000ms. In addition, it is also almost three times as fast as the

surrogate model presented in [208], though the surrogate model presented here is twice

as long in duration spanning 104M compared to 5 ◊ 103M in [208]. A notable caveat

is that the surrogate model presented in [208] covers a significantly larger domain of the

parameter space making any direct comparison di�cult. Nevertheless, the preliminary

model presented here suggests that reduced order models for precessing multipolar wave-

form models powered by neural networks are highly competitive relative to alternative

strategies, even on a CPU. We show the typical timings for each element and for the en-

tire waveform in Fig. 5.12. All CPU timings were generated using an Intel(R) Core(TM)

i7-9750H CPU @ 2.60GHz using the NumPy interface.
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Figure 5.12: Computational cost for each step in the waveform construction. A
notable bottleneck is the computation of the Wigner-D matrices D¸

mmÕ(–, —, “) over
the full 104M time grid.

However, a significant benefit of reduced order models powered by the Tensorflow ar-

chitecture is that they provide a convenient platform for GPU acceleration. In particular,

GPU acceleration is most beneficial when generating batches of surrogate models, miti-

gating any overhead in the transfer of data between the CPU and the GPU. Evaluating

the surrogate model for the 22-mode over a varying number of binaries, we find that GPU

acceleration leads to a factor ≥ O(30) speedup in surrogate generation cost relative to

CPUs. For 8192 binary configurations, we find that on a CPU each surrogate model takes

≥ 30ms compared to ≥ 0.7ms on a GPU. For the CPU-GPU benchmarking, CPU timings

were performed using an Intel(R) Xeon(R) CPU @ 2.30GHz and GPU timings were per-

formed using an NVIDIA Tesla P100-PCIE-16GB. We show the comparative CPU and

GPU timings in Fig. 5.13 along with the relative speedup provided by GPU acceleration.

5.4 Discussion

As the number of observations of GW signals from BBH mergers is only set to increase

with improving detector sensitivity, the availability of accurate, highly computationally

e�cient theoretical models is critical for future GW data analysis. Faster surrogate models

of very accurate but slower underlying waveform models will prove beneficial, motivating
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Figure 5.13: Computational cost per binary for evaluating the 22-mode surrogate
model over batches of N⁄ binaries. We show both CPU and GPU timings as well
as the overall speedup enabled by GPU acceleration.

a need for exploration of novel surrogate-building methods. In this work, we have con-

structed a proof-of-concept time-domain surrogate model of SEOBNRv4PHM , which makes

use of neural networks to perform parameter space fits. We follow the techniques used in

Refs. [153, 209], extending them to precessing multipolar waveforms for the full inspiral-

merger-ringdown signal. We decompose our surrogate model into two sections: copre-

cessing waveform modes defined in the non-inertial coprecessing L-frame which tracks the

precessing motion of the binary, and the three Euler angles which represent the rotation

between this frame and the J-frame. We consider four coprecessing modes: the dominant

quadrupolar (2, 2)-mode, and three higher multipoles (2, 1), (3, 3) and (4, 4), and each of

these modes is then decomposed further into amplitude and phase. Therefore we model a

total of 11 components. For each component, we construct a reduced basis and empirical

interpolant, before performing parameter space fits using artificial neural networks.

We demonstrate that the performance of our surrogate SEOBNN_v4PHM_4dq2 is highly

competitive in comparison to alternative surrogate modelling strategies, producing wave-

forms with precessing strain mismatches ≥ O (10≠3
≠ 10≠4) against the true SEOBNRv4PHM

data. We also show that this model is computationally e�cient, producing waveforms on

a CPU two orders of magnitude faster than the underlying SEOBNRv4PHM model, and al-
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most three times as fast as the recently developed surrogate model [208] in the restricted

intrinsic parameter space covered by our ANN model. We also note that our output wave-

forms are around two times longer than this surrogate, and that unlike the underlying

SEOBNRv4PHM model, the evaluation time is independent upon the binary parameters.

Additionally, we have shown that our surrogate model allows for an even more signifi-

cant speed up in evaluation time when evaluating batches of waveforms simultaneously

on GPUs.

As a proof of concept for neural network surrogates of precessing multipolar waveforms,

our model is built on a restricted parameter range of mass ratios q œ [1, 2] and single

precessing spins |‰1| Æ 0.8, |‰2| = 0. This multidimensional portion of the precessing BBH

parameter space is a starting point for surrogates which utilise neural networks, though

we do not envisage any imminent roadblocks to incorporating additional information in

order to extend towards the full 7D intrinsic parameter space of double precessing spins,

with more unequal mass ratios. We note, however, that the size of training dataset would

need to be significantly larger to accurately represents the full range of waveforms in this

larger parameter space. Additionally, any higher dimensional training dataset would need

to be thoroughly checked for data quality across the parameter space, as we noted that

even in our restricted parameter we faced issues of pathologies in the underlying waveform

model, where the coprecessing mode phases became discontinuous in the inspiral, possibly

due to inaccurate next-to-quasicircular corrections in SEOBNRv4PHM .

To explore how accurately our model can extrapolate outside the training range, we

tested each coprecessing mode surrogate on 1, 500 single-spin binaries with mass ratio in

q œ (2, 4] or with primary spin magnitudes 0.8 < |‰1| Æ 0.99 and computed mismatches

against the true SEOBNRv4PHM data. We found that the extrapolation in spin magnitude

is relatively smooth as long as the mass ratio is constrained to values that were in the

original training space (i.e. q Æ 2), resulting in mismatches for each coprecessing mode

approximately one order of magnitude worse than shown in Fig. 5.6. However, for binaries

with q > 2, irrespective of the in-plane spin magnitude, each mode surrogate performs
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poorly. The same trends were observed for the Euler angles.

Additionally, we investigated whether our model is able to capture the behaviour of

binaries with two spinning black holes by using the previously developed dimensional

reduction mapping of [39]. To do so, we constructed 1, 000 double-spin binaries with

parameters inside the training space, ensuring that the mapped spin magnitude was Æ 0.8.

We found that the coprecessing (2, 2)-mode is replicated with a mismatch accuracy of

O(102
≠ 103), but that higher modes are less well reproduced.

When building our surrogate model, we explored several options to improve the ac-

curacy of the coprecessing modes neural network fit. Before training the artificial neural

networks for the coprecessing modes, we tried using principal component analysis on the

reduced basis coe�cient phase training data, to identify trend directions in the data which

may be easier for the neural network to fit. Whilst this provided a small improvement in

resulting mismatches for the (2, 2)-mode, it led to marginally worse results for the (2, 1)-

mode and no noticeable di�erence in the (3, 3) and (4, 4)-modes. We also attempted to

improve the mismatches of our coprecessing modes by training the neural networks for

longer than 10, 000 epochs. However, between 10, 000 and 100, 000 epochs, almost no

improvements were seen in the loss values for both amplitudes and phases for all modes.

Furthermore we tried training on the residual coprecessing phase, where the geometric

mean has been subtracted to de-trend the phase data. We find this had no impact on

either the reduced basis sizes or the accuracy with which we were able to train our ar-

tificial neural networks. For the Euler angles, we explored the possibility of training an

additional neural network to model the residual error on the predicted –, but found no

noticeable improvement.

In addition, we also explored the e�ect of di�erent sizes of training data sets upon

the accuracy of the coprecessing mode fits. We found that the reduced basis size and

projection errors were insensitive to smaller training set sizes for sets above 100 wave-

forms, and similarly that the coprecessing mode mismatches for the (2, 1)-mode shown

in Fig. 5.6 were virtually identical when the (2, 1)-phase was reconstructed on a random
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training subset of 10, 000. This suggests that our choice of training set size may have been

conservative, and future models over this parameter space could attain similar accuracies

with smaller training set sizes.

We have demonstrated the feasibility and e�cacy of using neural networks as part of

precessing multipolar IMR waveform surrogate models, and leave the extension to the full

7D precessing parameter space as well as the modelling of the spin evolution to further

work. We suggest that with even further consideration given to neural network optimisa-

tion and data de-trending over the full 7D parameter space of generically precessing BBHs,

this could prove a promising pathway towards accurate, e�cient gravitational waveform

surrogate model building.
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6. Constraining Precession in the Black

Hole Binary Population with

Next-Generation Ground-Based

Gravitational Wave Detectors

This chapter is a reformatted version of a paper in preparation, with the working title

“Constraining Spin Precession in the Black Hole Binary Population with Next-Generation

Ground-Based Gravitational Wave Detectors”. L. M. Thomas will be the lead author, and

proposed the main idea behind this work, namely to assess the impact of the low frequency

sensitivity on the measurement of precession in a BBH population. The details of the

project were devised in discussions between L. M. Thomas, P. Schmidt and G. Pratten.

The idea to perform a systematic injection series was proposed by P. Schmidt, and L. M.

Thomas carried out the computational runs as detailed in Sec. 6.2, and produced all the

plots. Code to produce the posterior predictive distributions was provided by G. Pratten,

but L. M. Thomas generated the binary population as described in Subsec. 6.3.1, carried

out all of the individual binary parameter estimation runs presented in Subsec. 6.3.2, as

well as the population inference analyses presented in Subsecec. 6.3.3. For the latter,

L. M. Thomas implemented modifications to the Python library gwpopulation. L. M.

Thomas, P. Schmidt and G. Pratten jointly interpreted the results presented Secs. 6.2

and 6.3. The majority of the text presented here was written by L. M. Thomas, with

inputs from P. Schmidt and G. Pratten.

The confident detection of general-relativistic spin precession in a black hole binary

merger with gravitational waves has so far proved elusive. While there are events such

as GW190521 [37] and GW200129 [38] which show hints of possible spin precession, a

unambiguous detection of precession has not yet been made. GW190521 is obfuscated

by its extremely short duration signal, which leaves room for many possibilities of al-
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ternative interpretations to a quasicircular precessing BBH merger [210–216], while the

interpretation of GW200129 is heavily dependent on data quality and possible waveform

systematics [217, 218]. However, the population of BBHs inferred after the third observing

run of Advanced LIGO and Virgo hints at the presence of precession on the population

level [34, 35], implying that individual precessing binaries exist in the astrophysical popu-

lation. Future ground-based GW instruments with improved low-frequency sensitivity will

allow us to measure the individual black hole spin magnitudes and their orientation more

accurately as they will yield larger SNRs, and many more precession cycles observable in

the early inspiral. Presence of precession in a BBH system allows for breaking parameter

degeneracies as described in Sec. 2.4.2, and so more observed precession cycles will result

in more degeneracy breaking and accurate measurements. BH spins are important trac-

ers of a binary’s formation history, and more precise measurements will allow us to probe

and constrain BBH formation channels [21–29, 31–36]. Because BBH masses are red-

shifted in the frame of the detector as described in Sec. 2.2.2, the improved low-frequency

sensitivity of next-generation detectors will also allow us to observe massive mergers at

much higher redshifts than current observations, up to z ≥ 20 [219]. This will allow us

to probe early universe BH formation and cosmology, and reveal if and how primordial

black holes formed [220]. Additionally, it will improve the detectability of intrinsically

high mass binaries, including intermediate-mass black hole (IMBH) binaries [221, 222],

with masses of around 102
≠104 M§ as their merger frequency becomes increasingly lower.

More observations of these heavy binaries will also allow us to constrain the population

of hierarchical binary mergers [223], whose component BHs are the product of previous

BH mergers.

The strain sensitivity of ground-based GW detectors at frequencies below 20 Hz is

limited by seismic noise, gravity gradient noise, and thermal suspension noise, which are

di�cult to overcome. We refer the reader to Ref. [50] for a more thorough discussion

of noise sources in current interferometers, as we only discuss them briefly here. While

seismic noise may be limited using complex seismic isolation systems, reducing gravity
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Figure 6.1: PSDs for proposed next generation detectors CE in orange, the Ein-
stein Telescope in blue, as well as the proposed LIGO A+ upgrade in teal, and the
Virgo design sensitivity curve in purple. The dashed grey line shows the location
of 20Hz, which is the default low frequency cuto� for current gravitational wave
analyses. At this frequency, the next generation detectors CE and ET are approx-
imately ten times more sensitive than LIGO A+ and Virgo. The PSDs shown are
from Ref. [52] for CE, Ref. [53] for ET (specifically ET-D), and Ref. [51] for LIGO
A+ and Virgo design sensitivity respectively.

gradient noise may only be guaranteed with a low initial seismic excitation [224]. There-

fore, choosing an interferometer site with low seismic activity is crucial to combat these

low-frequency noise sources. Thermal noise in the test mass suspensions of the interfer-

ometer are the dominant thermal noise source in the frequency range 1 ≠ 10Hz [224, 225],

and may minimised with cryogenic temperatures or di�erent materials. The next genera-

tion of proposed GW observatories such as Cosmic Explorer (CE) [225] and the Einstein

Telescope (ET) [226] are designed to have a broadband sensitivity of about a factor of

ten better than Advanced LIGO A+ [225] with a much improved sensitivity below 20Hz

as shown in Fig. 6.1.

However, the exact minimum frequency cuto� for planned future instruments is still

uncertain. Here, we investigate the impact of the low-frequency cuto� of future GW

instruments on the measurement of precession in individual as well as a population of

BBHs. We describe the methodolody of hierarchical Bayesian inference in Sec. 6.1, be-
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fore outlining our two population spin models in Subsecs. 6.1.1 and 6.1.2. In order to

disentangle whether any improvement in the spin precession measurement with a lower

cuto� frequency flow is due to an increase in SNR due to the increased duration of the

signal, or whether it can be attributed to the increased number of observed precession

cycles, we carry out a systematic study for a GW190521-like system as detailed in Sub-

sec. 6.2. We then carry out a population study to determine the e�ect of changing flow

upon a population measurement of precession. We perform an injection and recovery

of a simulated population of BBH mergers as described in Subsec. 6.3 at three di�erent

values of flow. This is to assess whether the binary parameters are better recovered with

increased frequency content, particularly those parameters pertaining to precession. The

injected parameters of binaries used as part of this injected population are detailed in

Subsec. 6.3.1. We note that the longest duration signal we analyse is around 200 seconds

(corresponding to binary 11 in Tab. 6.2, from a low frequency of 5Hz), and so we do

not include time- or frequency-dependent antenna patterns [227] as part of our analysis.

We then use the results of the individual event analyses, discussed in Subsec. 6.3.2 to

perform population inference as described in Subsec. 6.3.3, to determine whether a lower

flow corresponds to a better measurement of precession on a population level. Finally, we

summarise our results in Sec. 6.4, discussing caveats and future work.

6.1 Hierarchical Bayesian Analysis

In this section, we give a brief overview of hierarchical Bayesian inference [228–232] to infer

information about the underlying astrophysical populations of BHs, before describing the

specific population hypermodels we will use in this work in Subsecs. 6.1.1 and 6.1.2. We

closely follow [82] in this first part.

The goal of a population analysis is to use results from Bayesian inference on individual

BBH merger events to infer properties about the population of BBH mergers as a whole.

We use ◊̨ to denote the set of 15 parameters which describe a single quasicircular BBH
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merger event. We assume that for each observed event its parameters are drawn from

distributions which are determined by the properties of the entire population. The set of

parameters which characterises the population that the individual observations originated

from, referred to as population hyperparameters, is denoted by �̨. We also use the prefix

hyper- to distinguish population quantities such as priors, posteriors and models from their

individual event counterparts. The consideration of an underlying population distribution

that all BBH events are drawn from is equivalent to asserting that the prior on the binary

parameters ◊̨ is conditional on �̨:

fi(◊̨) æ fi(◊̨|�̨). (6.1)

Therefore, we wish to obtain posterior distributions for the population hyperparameters

�̨ given the GW data d. Marginalised likelihoods are obtained by integrating over the

BBH parameters ◊̨,

L(d|�̨) =
⁄

d◊̨ L(d|◊̨)fi(◊̨|�̨), (6.2)

where L(d|◊̨) is the likelihood of observing the data d given a set of BBH parameters ◊̨.

Using Bayes’ theorem (see Sec.2.5), the hyperposterior for �̨ is then given by

p(�̨|d) = L(d|�̨)fi(�̨)
s

d�̨ L(d|�̨) fi(�̨)
, (6.3)

where the hyperprior fi(�̨) reflects any prior knowledge or belief about the hyperparam-

eters �̨ or about the underlying astrophysical population.

GW population analysis generally involves a set of N independent BBH events, each

of which has measured parameters ◊̨i and associated detector data di. The total likelihood

of observing N events can then be expressed as the product of individual event likelihoods

L({di}|{◊̨i}) =
NŸ

i=1
L(di|◊̨i). (6.4)

Since we assume that all events were drawn from the same population, parameterised by
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the same �̨, our marginalised likelihood Eq. (6.2) becomes

L({di}|�̨) =
NŸ

i=1

⁄
d◊̨i L(di|◊̨i)fi(◊̨i|�̨), (6.5)

and the hyperposterior of Eq. (6.3) becomes

p(�̨|{di}) = L({di}|�̨)fi(�̨)⁄
d�̨ L({di}|�̨)fi(�̨)

. (6.6)

The denominator in Eq. (6.6) involves integrals over the 15 BBH parameters ◊̨i for N

independent events, whilst also integrating over M population hyperparameters, which

makes a total of 15N + M parameters. This equates to an extremely large prior volume,

which can be prohibitively time-consuming to sample all at once. As an alternative, we

may break up this process into individual integrals for each event as follows.

The posterior samples for each individual BBH event are generated with some default

prior �̨, as described in Sec. 2.5, and are given by

p(◊̨i|di, �̨) = L(di|◊̨i)fi(◊̨i|�̨)⁄
d◊̨i L(di|◊̨i)fi(◊̨i|�̨)

, (6.7)

which rearranges to

L(di|◊̨i) =
3⁄

d◊̨iL(di|◊̨i)fi(◊̨i|�̨)
4

p(◊̨i|di, �̨)
fi(◊̨i|�̨)

. (6.8)

For convenience, we write the evidence assuming the default prior as Z�̨(di), where

Z�̨(di) =
⁄

d◊̨iL(di|◊̨i)fi(◊̨i|�̨), (6.9)

and Eq. (6.8) therefore reduces to

L(di|◊̨i) = Z�̨(di)
p(◊̨i|di, �̨)

fi(◊̨i|�̨)
. (6.10)
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We may then insert this into Eq. (6.5) to obtain

L({di}|�̨) =
NŸ

i=1

⁄
d◊̨i p(◊̨i|di, �̨)Z�̨(di)

fi(◊̨i|�̨)
fi(◊̨i|�̨)

. (6.11)

We may now use the fact that when integrating over a posterior distribution, we can

construct an expectation value

⁄
d◊̨i p(◊̨i|di, �̨)f(◊̨i) ¥

1
ni

niÿ

k

f(◊̨k
i ), (6.12)

for some function f . For the i-th event we assume there are ni posterior samples for ◊̨i,

denoted by ◊̨k
i , and so the sum over k is over these posterior samples. Our marginalised

likelihood from Eq. (6.11) then becomes

L({di}|�̨) =
NŸ

i=1

Z�̨(di)
ni

niÿ

k

fi(◊̨k
i |�̨)

fi(◊̨k
i |�̨)

, (6.13)

where the product i is over the N independent events, and the sum k is over the ni

posterior samples of ◊̨k
i for event i. If we assume a su�ciently uninformative prior �̨ when

performing our individual event analyses, we can recycle our posterior samples from the

individual events to obtain a posterior on �̨, as the choice of �̨ e�ectively cancels out. Our

approach is therefore to perform parameter estimation on individual events to produce

individual event posteriors, and utilise Eqs. (6.6) and (6.13), sampling over �̨ to obtain

a hyperposterior for the population distribution. We caveat that we do not make use of

any selection e�ects in our population analysis [233–235].

All of the above discussion has implicitly assumed a functional form of the population

hyperprior in the analysis, as in order to parameterise a distribution using hyperparame-

ters, one needs to know what form that distribution takes. As with single event parameter

estimation, this functional form is a choice which we call the hypermodel. For our infer-

ence, we make use of two distinct hypermodels to infer information about the distribution

of spin parameters across the binary population. We use parameterised models to con-
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strain the distribution of individual spin magnitudes, and also the distribution of e�ective

spin parameters {‰e�, ‰p}. In Subsecs. 6.1.1 and 6.1.2 we discuss each of these hyper-

models in more detail.

6.1.1 Hypermodel of Spin Magnitude Distribution

Our first hypermodel uses a phenomenological approach to model the distribution of spin

magnitudes ‰1 and ‰2. This hypermodel was first introduced in Ref. [32] and subsequently

used in Refs. [33–35] in conjunction with a hypermodel for the spin tilts introduced in

Ref. [29]. We note that we will focus exclusively on the spin magnitudes hypermodel in

this work due to small number statistics, as will be discussed in Sec. 6.3.1, and leave the

spin tilts analysis to future work.

This spin magnitudes hypermodel, which we call the Beta Magnitudes hypermodel,

assumes the distribution of each spin magnitude ‰1, ‰2 to follow a beta distribution,

p(‰i|–‰i , —‰i) = ‰
–‰i ≠1
i (‰max ≠ ‰i)—‰i ≠1

B(–‰i—‰i)‰
—‰i +–‰i +1
max

, (6.14)

where i = 1, 2, and ‰max is the maximum spin value which we take to be 1 in all our

analysis. The quantity B(–‰i—‰i) is a normalisation constant,

B(–‰i—‰i) = �(–‰i)�(—‰i)
�(–‰i + —‰i)

, (6.15)

where � is the gamma function, and –‰i , —‰i > 0. Therefore this distribution depends

on four hyperparameters, the shape parameters –1, —1 for the primary spin magnitude

distribution and –2, —2 for the secondary spin magnitude distribution.

6.1.2 Hypermodel of E�ective Spin Parameter Distribution

Our second spin hypermodel assumes the distribution of the e�ective spin parameters

‰e�, ‰p to be a bivariate Gaussian G [35]. This hypermodel, based on an earlier iteration
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in Ref. [236] and subsequently adapted for use in Refs. [34, 35], makes use of the fact

that the e�ective spins are often better constrained in individual event analyses than the

individual BH spin magnitudes or tilts. The joint probability density function is given by

p(‰e�, ‰p|µ‰e�
, ‡‰e�

, µ‰p , ‡‰p , fl) Ã G(‰e�, ‰p|µ̨, �), (6.16)

where (µ‰e�
, µ‰p) are the means, and � is the covariance matrix given by

� =

Q

cca
‡2

‰e�
fl‡‰e�

‡‰p

fl‡‰e�
‡‰p ‡2

‰p

R

ddb . (6.17)

Therefore, this hypermodel depends on five hyperparameters: µ‰e�
and µ‰p which are the

means of the ‰e� and ‰p one-dimensional marginalised distributions respectively; ‡‰e�
and

‡‰p the standard deviations of these distributions; and fl which parameterises the degree

of correlation between the ‰e� and ‰p distributions. As ‰e� varies in the region [≠1, 1],

µ‰e�
may also take these values, and similarly for ‰p and µ‰p over [0, 1]. The bivariate

Gaussian function G is also truncated and normalized accordingly to satisfy the allowed

ranges for the e�ective spins.

6.2 Systematic Injection Study

A key consideration when assessing possible improvement in the parameter estimation

results with decreasing flow is to disentangle the e�ects of increasing SNR and more

precession cycles, which both can lead to better spin constraints. In this section, we

perform a systematic series of waveform injections and recoveries to disentangle these two

e�ects. We describe the setup and methodology of the analysis in Subsec. 6.2.1, before

presenting our results in Subsec. 6.2.2.
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6.2.1 Methodology

To disentangle these two e�ects, we perform full Bayesian inference (see Sec. 2.5) on a

systematic series of injections for a binary with parameters similar to that of the recovered

parameters for the observed event GW190521 [37], which showed possible posterior sup-

port for presence of precession, but due to the heavy BH masses was too short a signal to

e�ectively constrain the binary spin parameters [37]. The injected parameters are given

in Tab. 6.1. We perform two complementary series of injections, the first as shown in

columns 3-5 of Tab. 6.1 where the injected luminosity distance dL remains fixed, and so

the SNR increases as the flow is lowered from 20Hz, to 10Hz, and then to 5Hz. We then

inject a second series (as shown in columns 6-8 of Tab. 6.1) where the luminosity distance

dL is adjusted to keep the SNR fixed across the three values of flow, to isolate the e�ect of

only increasing number of precession cycles without changing the SNR. We note that to

save on computational time, we use the same analysis for flow = 5Hz for each of the two

systematic series, so in total we only perform 5 injection and recovery analyses across the

two series.

We calculate the number of precession cycles and SNR as follows: An approximate

expression for the number of precession cycles between flow and some maximum frequency

fmax < fmerger, for a BBH with total mass M (in solar masses M§ at 2PN order is given

in Eq. [45] of Ref. [14] by

–(flow, fmax)/2fi ¥

Y
___]

___[

11
1
1 + 3m1

4m2

2
10M§

M
flow

fmaz
, |L̨| ∫ |S̨|,

1.9
1
1 + 3m1

4m2

2
m1

m2

|S̨|
m2

1

1
10M§

M
flow

fmax

22/3
, |S̨| ∫ |L̨|.

(6.18)

We relax the conditions in the above equation to be |L̨| Ø |S̨| and |S̨| > |L̨|, and verify

them for each binary using the expression for |L̨| to 3PN for aligned spins as given in

Ref. [148] and derived in Refs. [57, 237, 238]:

|L̨| = ÷M2

v

Ë
L0 + L1v + L2v

2 + L3v
3 + L4v

4 + L5v
5 + L6v

6 + ...
È

(6.19)
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Injected Fixed dL Fixed flnetwork

value 5Hz 10Hz 20Hz 5Hz 10Hz 20Hz
m1,source 84.83 84.84+0.72

≠0.72
85.01+1.04

≠0.80
84.92+1.26

≠1.23
84.84+0.72

≠0.72
84.89+0.80

≠0.75
84.82+0.88

≠0.91[M§]
m2,source 65.86 65.88+0.56

≠0.56
65.88+0.88

≠0.89
65.60+1.20

≠1.27
65.88+0.56

≠0.56
65.85+0.82

≠0.86
65.85+0.94

≠0.96[M§]
‰1 0.69 0.69+0.03

≠0.03
0.69+0.09

≠0.21
0.43+0.28

≠0.24
0.69+0.03

≠0.03
0.69+0.05

≠0.22
0.68+0.06

≠0.09

‰2 0.73 0.72+0.05

≠0.05
0.72+0.11

≠0.07
0.67+0.27

≠0.59
0.72+0.05

≠0.05
0.72+0.09

≠0.06
0.71+0.07

≠0.06

◊1 [deg] 81.54 81.40+2.39

≠2.49
81.19+3.45

≠3.82
75.44+8.32

≠42.69
81.40+2.39

≠2.49
81.93+4.01

≠4.01
81.36+4.01

≠4.58

◊2 [deg] 85.37 85.40+3.99

≠3.77
84.84+6.20

≠5.75
87.95+20.50

≠11.79
85.40+3.99

≠3.77
84.80+5.16

≠5.73
85.94+7.45

≠6.30

‰p 0.68 0.68+0.03

≠0.03
0.68+0.09

≠0.10
0.56+0.16

≠0.31
0.68+0.03

≠0.03
0.68+0.06

≠0.07
0.67+0.05

≠0.07

‰e� 0.08 0.08+0.01

≠0.01
0.09+0.02

≠0.01
0.08+0.03

≠0.04
0.08+0.01

≠0.01
0.08+0.01

≠0.01
0.08+0.02

≠0.03

„12 [deg] 190.77 191.53+6.97

≠6.13
195.03+29.87

≠13.92
219.46+76.83

≠69.10
191.53+6.97

≠6.13
193.22+32.12

≠11.47
194.55+20.62

≠12.72

– [deg] 198.10 198.20+2.47

≠1.74
198.16+2.35

≠1.68
198.10+2.20

≠1.61
198.20+2.47

≠1.74
198.15+2.13

≠1.54
197.98+1.60

≠1.30

” [deg] ≠44.83 ≠45.04+11.06

≠10.01
≠44.79+9.83

≠9.21
44.43+9.83

≠9.21
≠45.04+11.06

≠10.01
≠44.778.80

≠8.77
≠43.97+7.40

≠6.47

◊JN [deg] 44.49 44.39+1.26

≠1.31
44.25+2.37

≠3.51
38.03+7.21

≠6.36
44.39+1.26

≠1.31
44.27+1.97

≠2.61
44.01+2.24

≠2.65

Â [deg] 104.21 103.86+2.13

≠2.22
103.64+10.80

≠4.21
106.48+11.44

≠8.20
103.86+2.13

≠2.22
103.86+9.56

≠2.91
103.49+3.42

≠3.72

z 0.82 0.82 0.82 0.82 0.71 0.57
dL [Mpc] 5296.7 5296.7 5296.7 5296.7 4468.7 3393.3
flnetwork 374.2 315.7 239.7 374.2 374.2 374.2

–(flow, fISCO) 2.64 1.21 0.49 2.64 1.21 0.49

Table 6.1: Injected and recovered parameters for the systematic series for a
GW190521-like binary, including source frame masses, spin, and extrinsic param-
eters. All spin and orientation-related parameters are defined at a reference fre-
quency of fref = 5Hz. We perform two series of injections, firstly a set where the
luminosity distance dL is fixed and so the SNR flnetwork increases as flow decreases.
For the second set we fixed the SNR flnetwork by adjusting dL, to isolate the e�ect of
changing number of precession cycles. Columns 3-5 show the injected dL, redshift
z and flnetwork, and recovered parameters for the fixed dL series, and columns 6-8
show the same for the fixed flnetwork series. The recovered values show the medians,
and the 90% credible intervals.

where, as in Sec. 2.2.1, M is the total mass, ÷ is the symmetric mass ratio, and v is the
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velocity as in Eq. (2.83). The post-Newtonian coe�cients Li are given by

L0 = 1, (6.20)

L1 = 0, (6.21)

L2 = 3
2 + ÷

6 , (6.22)

L3 = ‰1Î

A

≠
5
3 ≠

5”

3 + 5÷

6

B

+ ‰2Î

A

≠
5
3 + 5”

3 + 5÷

6

B

, (6.23)

L4 = 27
8 ≠

19÷

8 + ÷2

24 , (6.24)

L5 = ≠
7

144
1
‰1Î [72 + ”(72 ≠ 31÷) + ÷(≠121 + 2÷)] + ‰2Î [72 + ÷(≠121 + 2÷) + ”(≠72 + 31÷)]

2
,

(6.25)

L6 = 1
1296 (10935 + ÷(≠62001 + ÷(1674 + 7÷) + 4428fi)) , (6.26)

where ” =
Ô

1 ≠ 4÷ and ‰iÎ are the components of the BH spins aligned with the orbital

angular momentum (see Sec. 2.4). We then set our maximum frequency to be the fre-

quency of the Kerr innermost stable circular orbit (ISCO) fISCO. Here we provide a brief

outline of the methodology we use, but for more details and derivations of the expressions

we refer the reader to Ref. [239]. More specifically, we choose fISCO according to the

orbital frequency of a (non-spinning) test particle orbiting a Kerr black hole at the ISCO.

The Kerr black we take to be the remnant of the BBH merger, with mass equal to the

total mass of the binary and spin equal to the remnant spin. The fISCO is given by

fISCO =
1
fi r3/2

ISCO ‰f

2≠1
, (6.27)

where ‰f is the dimensionless spin of the merger remnant black hole. We obtain the value

of ‰f using the phenomenological fits to ÷, ‰1Î and ‰2Î from Ref. [145], where we specify

the spin components ‰1Î, ‰1Î at our reference frequency of 5Hz. The ISCO radius rISCO
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for a Kerr black hole is given by

rISCO = M
3

3 + Z2 û

Ò
(3 ≠ Z1)(3 + Z1 + 2Z2)

4
, (6.28)

where the choice of sign is negative if the remnant spin vector ‰̨f is aligned with the orbital

angular momentum L̨ (as defined at the reference frequency), ie. the angle between them

is less than 90 degrees, and positive otherwise. The quantities Z1 and Z2 are given by

Z1 = 1 + (1 ≠ ‰2
f )1/3

Ë
(1 + ‰f )1/3 + (1 ≠ ‰f )1/3

È
, (6.29)

Z2 =
Ò

3‰2
f + Z2

1 . (6.30)

The ISCO frequency is an approximation to the final GW frequency before plunge, and

so a natural endpoint to the precessional evolution of the binary. It also signifies the

breakdown of the PN series. The total number of precession cycles calculated in this way

for our systematic injection series is shown in Tab. 6.1.

Considering a binary with intrinsic parameters ◊̨, and resulting waveform h(t; ◊̨), the

(optimal) SNR fl is given by

fl2 = Èh, hÍ = 4R

⁄ fmax

flow

h̃(f)h̃ú(f)
Sn(|f |) df. (6.31)

As the integrand is positive definite, the SNR fl will increase as flow decreases, assuming

fmax remains fixed. There is an expected approximate scaling between SNR and the

posterior width � on recovered parameters [240, 241],

�90%(◊) Ã
1

Ô
fl

, (6.32)

where �90% denotes the width of the 90% credible interval on the 1D marginalised posterior

of a particular parameter ◊ œ ◊̨. Therefore, as the SNR increases with decreasing flow,

we expect the posterior widths to decrease accordingly, and hence an increase in the
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precision to which binary parameters can be measured. Additionally we may also expect

the posterior widths to decrease due to an increased number of observed precession cycles,

particularly for the spin parameters. Presence of precession in a binary breaks parameter

degeneracies as described in Sec. 2.4.2, and so the observation of more precession cycles

will allow for more degeneracy breaking likely resulting in smaller posterior widths.

For the systematic analysis we use a three-detector network consisting of one triangular-

shaped ET-D [224] at the current location of Virgo, and two interferometers at the location

of Hanford and Livingston with LIGO A+ design sensitivity [225]. We only vary the lower

cuto� frequency in the next generation detector in the network, in this case ET, while

keeping the low frequency at 20Hz for the Hanford and Livingston A+ interferometers.

The network SNRs flnetwork shown in Tab. 6.1 are the injected network SNRs. Assuming

a coherent GW signal, the network SNR flnetwork is the defined by the quadrature sum of

the SNRs in each detector in the network [242]. For a network of nD detectors, each with

SNR fli, this is given by

fl2
network =

nDÿ

i=1
fl2

i , (6.33)

and for our network of ET-D, H+ and L+ we have

fl2
network = fl2

ET-D + fl2
H+ + fl2

L+. (6.34)

We use the parameter estimation code Bilby [87] with the nested sampler Dynesty [86]

to perform our analyses. We perform zero noise injections with the IMRPhenomXPHM

waveform model [168] and recover with the same model, to avoid incurring biases in our

parameter estimation due to waveform systematics. We use uninformative priors uniform

in chirp mass, mass ratio, and spin magnitudes, isotropic in spin orientation, and the

standard prior for extrinsic parameters (see e.g. [134]).
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Figure 6.2: Posterior distributions for the spin parameters of the GW190521-like
injected binary whose parameters are shown in Tab. 6.1, for the fixed dL systematic
series. We show 90% credible 2D contours and 1D distributions for each of the 3
flow values, 20Hz in purple, 10Hz in teal, and 5Hz in orange, with the true injected
values shown in black. As a result of both the increasing SNR and the higher number
of observed precession cycles as flow decreases, the spin posterior widths/contours
shrink accordingly, also breaking degeneracies and reducing multimodalities present
in the analysis from 20Hz.

6.2.2 Results

We show the results for the systematic series study in Figs. 6.2 and 6.3. In Fig. 6.2,

we show the posterior distributions for the spin parameters at a reference frequency of

fref = 5Hz in the systematic series with fixed dL, whose parameters are detailed in columns
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3-5 of Tab. 6.1. We show the 90% credible contours (see Sec. 2.5) and distributions for

flow = 20Hz in purple, flow = 10Hz in teal, and flow = 5Hz in orange, with the true

injected values shown in black. As the SNR flnetwork and number of observed precession

cycles both increase with lower flow, the width of the 90% credible intervals decreases as

expected, and we have verified that the widths scale according to Eq. (6.32).

The 90% credible interval width of the 1D posteriors of ‰p shrinks from 0.48 at flow =

20Hz (nearly half the possible range), to 40% of this width at 10Hz (0.19), and then

13% of the 20Hz width at 5Hz (0.06). The ‰e� posterior widths reduce by 77% between

20Hz and 5Hz. The largest overall improvement for any spin parameter is seen in the

primary spin tilt ◊1, where the 90% credible interval shrinks from 51 degrees at 20Hz,

down to 7 degrees at 10Hz and 5 degrees at 5Hz, corresponding to a 90% reduction in the

posterior width. The secondary tilt ◊2 reduces from a 90% credible interval of 32 degrees

at 20Hz, down to 37% of this width at 10Hz with 12 degrees, and 24% at 5Hz with 8

degrees. Finally, the spin magnitudes have a width of 0.52 and 0.86 at 20Hz for ‰1 and

‰2 respectively, both more than half the total prior width, and these reduce to 0.30 and

0.19 at 10Hz, and then to 0.06 and 0.09 at 5Hz. For both magnitudes this is around a

90% reduction in the credible interval size. We note that for the results with flow = 20Hz

(purple), the large credible interval width are not due to poor convergence of the runs,

which we verified by choosing (even) more conservative sampler settings. It is evident

from Fig. 6.2 that the posteriors for several spin parameters cover almost the entire prior

range, and hence we conclude that these parameters cannot be constrained e�ectively for

those injections. This is also consistent with the majority of spin constraints obtained to

date from GW observations [218]. This could be due to a shorter duration signal or lower

SNR than the 10Hz and 5Hz results shown on the same plot, or a combination of these

two e�ects. Dramatic though these improvements are, it is not yet clear whether they are

as a result of the increasing SNR, increased number of precession cycles, or a combination

of the two.

To definitively answer this question, we performed the second set of injections with
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Figure 6.3: Posterior distributions for spin parameters of the GW190521-like
injected binary whose parameters are shown in Tab. 6.1, for the series with fixed
network flnetwork. We show 90% credible 2D contours and 1D distributions for each
of the 3 flow values, 20Hz in purple, 10Hz in teal, and 5Hz in orange, with the true
injected values shown in black. The luminosity distances dL have been adjusted
such that each of the three injections has the same SNR flnetwork ¥ 374, as detailed
in Tab. 6.1. As flow is lowered, the increased number of precession cycles leads to
reduce the uncertainty on the recovered parameters.

fixed network SNR flnetwork = 374.2, whose parameters are detailed in columns 6-8 of

Tab. 6.1. The resulting posterior distributions for the spin parameters are shown in

Fig. 6.3. As before, we show the 90% credible contours and distributions for flow = 20Hz

in purple, flow = 10Hz in teal, and flow = 5Hz in orange, with the true injected values

shown in black. We find small improvements in the posterior widths as flow decreases,
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which is now purely due to a change in the number of precession cycles in band and not

the SNR, which remains fixed. The recovered posteriors mostly show decreasing 90%

credible interval widths with decreasing flow. For example, the spin tilts ◊1 and ◊2 have a

90% credible interval of 9 and 14 degrees respectively with flow = 20Hz. This reduces to 8

and 11 degrees respectively at 10Hz, and 5 and 8 degrees at 5Hz, which is an improvement

of around 56% between the 20Hz and 10Hz width for each tilt angle. The e�ective spin

‰e�, which already has narrow posterior at 20Hz with a 90% width of only 0.04, reduces to

0.02 at 5Hz corresponding to a 50% reduction in uncertainty. Interestingly, the individual

BH spin magnitudes ‰1 and ‰2 and the e�ective precession spin ‰p all shows signs of

being recovered slightly worse from 10Hz than 20Hz due to a slight bimodality in the

10Hz posteriors (teal) as can be seen in Fig. 6.3. However, the 5Hz posteriors all show

dramatic improvements with respect to the 20Hz widths, with the 90% credible interval

on ‰p reducing by 52%, and ‰1 and ‰2 reducing by 60% and 41% respectively.

We note that the recovered 20Hz spin posteriors are now much tighter than in Fig. 6.2

and no longer uninformative. While the injected parameters for these two analyses are

the same including the length of signal and number of precession cycles, except for the

luminosity distance, this results in a di�erence in the network SNR flnetwork of ¥ 150.

Therefore, the reduced uncertainty on the recovered parameters in Fig. 6.3 in comparison

to Fig. 6.2, shown by the decreased 90% credible intervals between columns 5 and 8 of

Tab. 6.1, is the direct result of the increased SNR. However, we note that in general,

as we see measurement improvements with decreasing flow both with increasing SNR in

Fig. 6.2, and when the SNR is kept fixed in Fig. 6.3, then any improvements with a lower

frequency cuto� must be the result of a combination of higher SNR and more precession

cycles observed.

With these results in mind, we will now assess the potential improvements in estimat-

ing the hyperparameters �̨ of an astrophysical population of black holes with decreasing

flow, as described in Sec. 6.3.
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6.3 Population Study

In Sec. 6.2, we showed that a lower minimum frequency cuto� flow can lead to significant

improvements in the precision of the inferred spin parameters of black hole binaries.

We also showed that, while this is mainly due to the increased SNR of longer-in-band

signals, it can also be attributed in part to the observation of more precession cycles.

We now apply these findings to a population level analysis, to determine whether the

improvements shown in the measurement of individual binary parameters translate into

an improved recovery of the population parameters.

To do so, we first draw a subset of BBHs from the astrophysical population of black

holes after O3 [35]. We then perform Bayesian inference on each binary using three

di�erent low cuto� frequencies, 5Hz, 10Hz, and 20Hz, similarly to the systematic series

described above. We note that as the luminosity distance dL for each binary each kept

constant across the three frequencies, the SNR for each binary will vary, similarly to the

series as shown in Fig. 6.2. Subsequently, following the process detailed in Sec. 6.1, we use

the parameter estimation samples to perform hierarchical population analyses on the spin

parameters to infer the underlying spin distribution. For each hypermodel we perform

three analyses, one for each value of flow. Thus, we can directly assess the impact of

varying flow on the inferred spin population.

For our individual event analyses we use a three-detector network consisting of one CE

at the current location of Hanford, one interferometer at the location of Livingston with

LIGO A+ design sensitivity (referred to as L+), and one interferometer at the location of

Virgo at Advanced Virgo design sensitivity [243]. Similarly to the systematic series, we use

the public inference library Bilby [87] with the nested sampler Dynesty [86] to perform

our analyses, and inject and recover with the same waveform model IMRPhenomXPHM [168]

into zero noise. We only vary the low frequency cuto� for the next generation detector in

our network, in this case CE, while keeping flow at 20Hz for the other two interferometers.

For binaries with signal durations longer than four seconds, we make use of a multibanded

likelihood [244] to accelerate likelihood evaluations by using frequency grids with adaptive
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resolutions such that there are fewer evaluation points at lower frequencies, where the

binary frequency evolution is slower (see Eq. (2.59)). If the signal duration in band is less

than 4 seconds, we use the standard BBH likelihood Eq. (2.103) as implemented in Bilby.

We use the same priors as for the systematic series analysis as described in Subsec. 6.2.1.

In the following subsections, we describe our population analysis in more detail. In

Subec. 6.3.1 we outline how we draw our subset of binaries from the current best knowledge

of the astrophysical distribution of BHs. In Subsec. 6.3.2 we show a selection of results for

the individual binary parameter estimation analyses. Then in Subsec. 6.3.3, we discuss

how we perform the population analyses and present the results to ascertain whether the

improvements in accuracy of recovered binary parameters when decreasing flow leads to

an improvement in how precisely we can measure the population hyperparameters.

6.3.1 Population Binary Parameters

We draw our set of individual binaries from the inferred population from GWTC-3 [35]

using the hyperparameter posterior samples which were obtained in therein, assuming a

Power Law + Peak hypermodel for the BH masses and the Default spin hypermodel.

The Power Law + Peak hypermodel uses two key ingredients: The first is a power law

distribution for the BH mass between some minimum and maximum values mmin and

mmax, outside of which there is a sharp cuto�. The second is a Gaussian component moti-

vated by the fact that the mass loss undergone by pulsational pair-instability supernovae

could lead to a larger number of BHs with masses smaller than the pair-instability gap,

which lies between ≥ 50M§ and ≥ 130M§ [245]. For more details of this hypermodel

we refer the reader to Ref. [29] where the hypermodel was introduced, and Refs. [33–35]

where it is referred to as ‘Model B’, ‘Model C’, and Power Law + Peak respectively.

The Default spin hypermodel is a combination of: (i) a hypermodel for the spin tilts

[246], assuming a mixture of an isotropic, dynamically formed subpopulation, and a ‘field’

subpopulation whose spins are approximately aligned with the orbital angular momentum

[247] (for a review of BBH formation channels we refer the reader to, eg. Refs. [21, 70]);
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and (ii) the Beta Magnitudes hypermodel described in Sec. 6.1.1. In our analysis, we will

exclusively focus on the spin magnitudes. The GWTC-3 analysis assumes that the primary

and secondary BH spin magnitudes are drawn from the same Beta distribution, which

enforces that ‡1 = ‡2 = ‡, as well as –‰1
= –‰2

= –‰ and —‰1
= —‰2

= —‰. Henceforth we

refer to the combination of the Power Law + Peak mass hypermodel and Default spin

hypermodel as the GWTC-3 hypermodel. Given a value for each of the hyperparameters for

the GWTC-3 hypermodel, we obtain a probability distribution for each binary parameter

in ◊̨GWTC-3 = {m1, m2, ‰1, ‰2, ◊1, ◊2}, from which we draw our subset of binaries. The

distributions of the population hyperparameters, which include a set of hyperparameters

that describe the mass distributions, as well as a set that describe the spins, were inferred

probabilistically using the hierarchical framework outlined in Sec. 6.1.

First, we simulate 2500 population realisations, where for each realisation we randomly

choose a single posterior sample from the distributions of the population hyperparameters.

For each of the 2500 realisations, we construct the resulting probability distributions for

m1, q, ‰i, and ◊i, and then draw 2500 samples from each distribution. We note that we

draw values for ‰1 and ‰2 separately from the distribution for ‰i in this step, as well as ◊1

separately to ◊2, so although the GWTC-3 hypermodel assumes primary and secondary

spins are drawn from the same underlying population, we obtain slightly di�erent final

distributions due to sampling them separately. For each parameter and each population

realisation, we then construct a one-dimensional kernel density estimator (KDE) to obtain

a smooth posterior predictive probability distribution (PPD). We also use the spin samples

to obtain drawns of ‰p and ‰e� for each realisation, and construct KDEs also for these. We

therefore have 2500 population realisations, each with a smooth probability distribution

for m1, q, ‰1, ‰2, ◊1, ◊2, ‰p and ‰e�. We then construct the interpolated median PPD

for each parameter, from which we then draw the binary parameters m1, q, ‰1, ‰2, ◊1

and ◊2. The resulting median PPDs (teal) and 90% credible intervals (grey) for the spin

parameters are shown in Figs. 6.4 and 6.5.

To obtain the values of the hyperparameters in the Gaussian Spin and Beta Magnitudes
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Figure 6.4: Median PPDs (teal), 90% credible intervals (filled grey) for the pri-
mary and secondary spin magnitudes distribution ‰1 (left), ‰2 (right), drawn from
the inferred population from GWTC-3. We also plot the best-fitting Beta distri-
butions to the median PPDs in orange, and the Beta distribution which best fits
our sample population of 20 binaries in purple. We note that due to small number
statistics of our injected population, the purple Beta distributions look significantly
di�erent to the underlying population distributions, but that the best-fitting Beta
distributions in orange match the median PPD very closely.

which describe this underlying population distribution, we perform fits of the median

PPDs to the functional forms of these hypermodels. For the spin magnitudes, we use

SciPy curve fit to fit the median PPD for ‰1 (shown in teal in the left panel of Fig. 6.4)

to a Beta distribution (Eq. (6.14)). We do the same for the secondary spin magnitude,

and plot the resulting Beta distributions in orange in Fig. 6.4. We note that these Beta

distribution fits match the underlying PPD very closely, and so are a good description of

the underlying spin population. For the Gaussian Spin hypermodel, we perform a 2D fit

on the 100, 000 initial sample of binaries taken from the underlying population, as 1D fits

to the median PPDs shown in teal in Fig. 6.5 will not provide a value for the correlation

parameter fl. We note since these binaries are drawn from the median PPDs plot in teal

in Fig. 6.5, the histograms of ‰p and ‰e� values closely match these distributions. We

fit the 2D histogram in ‰p, ‰e� to a 2D Gaussian, and plot the resulting marginalised

distributions for ‰p and ‰e� in orange in Fig. 6.5. We note that unlike for the Beta

Magnitudes fit where the orange distribution closely matches the median PPD, here we

see significant deviations especially in ‰p, which suggests that our underlying population
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of binaries is not well-modelled by a 2D Gaussian. The values for the hyperparameters

given as a result of these fits are given in column 3 of Tab. 6.4, and we hereafter will refer

to them as the underlying population values.

Figure 6.5: Median PPDs (teal), 90% credible intervals (filled grey) for the ef-
fective spin parameter distributions ‰e� (left), ‰p (right), drawn from the inferred
population from GWTC-3. We also plot the best-fitting 2D Gaussian to the un-
derlying population in orange, and the 2D Gaussian which best fits our sample
population of 20 binaries in purple. We note that due to small number statistics of
our injected population, the purple distributions look significantly di�erent to the
underlying population distributions. Additionally, the underlying population is not
well represented by a 2D Gaussian, as shown particularly in the right panel where
the best-fitting orange curve for ‰p does not match the underlying median PPD in
green.

In addition to the intrinsic binary parameters ◊̨ that characterise each binary, BBH

mergers are distributed in the expanding universe, which can be probed with GW ob-

servations. This also provides a unique opportunity to probe the evolution of the BBH

merger R as a function of redshift. Due to the limited sensitivity range of current GW

detectors, the merger rate is commonly modelled as a power law in redshift z,

R(z) Ã (1 + z)Ÿ, (6.35)

and we take the value of Ÿ to be 2.9, which is the median value inferred from the GWTC-

3 population analysis [35]. We draw binary samples of redshift from this power law

distribution between a minimum of z = 0 and maximum z = 5, where we choose z = 5
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Binary m1,det m2,det ‰1 ‰2
◊1 ◊2 ‰p ‰e�

„12
[M§] [M§] [deg] [deg] [deg]

1 15.07 13.88 0.02 0.13 90.34 107.23 0.11 -0.02 23.77
2 15.80 14.09 0.54 0.29 52.51 146.39 0.42 0.05 279.72
3 70.97 58.34 0.25 0.16 148.12 136.78 0.13 -0.18 210.27
4 126.60 75.99 0.47 0.22 160.73 50.44 0.15 -0.23 10.96
5 200.11 179.21 0.23 0.07 140.01 148.23 0.15 -0.13 214.60
6 40.69 33.80 0.49 0.26 84.22 125.18 0.49 -0.05 236.13
7 73.24 60.42 0.12 0.23 38.86 83.51 0.18 0.06 355.95
8 117.17 93.77 0.00 0.42 3.56 138.87 0.21 -0.14 281.21
9 27.84 26.44 0.65 0.08 42.50 24.35 0.43 0.28 90.06
10 13.50 9.67 0.60 0.10 95.30 58.70 0.59 -0.01 40.85
11 11.86 10.54 0.06 0.13 131.54 101.73 0.11 -0.04 300.64
12 71.75 64.99 0.18 0.07 66.68 10.61 0.16 0.07 160.57
13 98.99 79.92 0.19 0.23 84.09 52.66 0.19 0.07 227.53
14 56.74 54.58 0.10 0.06 94.17 144.35 0.09 -0.04 79.30
15 27.33 25.12 0.18 0.07 141.56 80.55 0.11 -0.07 2.99
16 22.98 19.08 0.24 0.16 122.39 121.52 0.20 -0.12 310.89
17 73.17 62.93 0.24 0.34 51.26 16.12 0.18 0.23 246.86
18 116.95 92.22 0.15 0.37 34.85 63.43 0.25 0.14 291.55
19 86.52 84.31 0.05 0.09 95.84 155.11 0.05 -0.05 272.45
20 65.18 43.18 0.13 0.33 54.56 71.90 0.20 0.08 120.36

Table 6.2: Injected intrinsic binary parameters, including detector frame masses,
and spins, for the 20 binaries in our population. All spin and orientation-related
parameters are defined at a reference frequency of fref = 5Hz.

to limit the number of samples in our population which would we highly redshifted and

therefore out-of-band at a low frequency of 20Hz. We then convert these samples into

luminosity distance using (see eg. Ref. [248])

dL(z) = c(1 + z)
H0

Ô
�k

sinh
Ò

�k

⁄ zÕ

0

dzÕ
Ò

�m(1 + zÕ)3 + �k(1 + zÕ)2 + ��
, (6.36)

where c is the speed of light, H0 is the present day Hubble constant, and �k, �m and

�� are the dimensionless densities of spacetime curvature, mass and the cosmological

constant. We use Planck15 [249] cosmology for these values.

For the remaining binary parameter, we sample uniformly in „1 (the phase of the pri-

mary BH at the reference frequency of 5Hz), „12 = „2 ≠ „1, right ascension –, declination

”, polarization angle Â and the cosine of the binary inclination cos(ÿ). We also impose a
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Binary – [deg] ” [deg] z dL [Mpc] Â [deg] ◊JN [deg] flnetwork
1 17.09 -36.97 0.29 1543.28 42.05 43.00 146.2
2 100.86 -17.76 0.42 2397.09 131.23 20.08 164.4
3 204.84 -40.39 1.06 7379.77 30.23 47.83 96.2
4 321.44 -41.78 1.37 10063.66 5.61 155.53 107.1
5 26.05 -59.18 2.67 22643.24 153.72 144.82 121.0
6 253.11 26.50 0.27 1468.73 83.79 66.30 238.7
7 67.31 -30.86 1.62 12316.62 149.45 12.37 118.2
8 18.68 -70.56 2.66 22529.88 129.72 8.84 94.3
9 342.16 43.80 0.56 3351.27 86.20 151.48 194.1
10 52.38 -36.47 0.34 1888.33 160.37 123.54 113.4
11 183.26 74.09 0.24 1258.24 93.08 71.96 74.2
12 139.40 64.20 1.06 7335.08 26.36 110.62 120.4
13 272.53 7.66 1.67 12833.73 126.38 168.28 131.8
14 311.87 -37.82 0.74 4733.08 135.29 123.54 113.8
15 3.29 34.61 0.13 672.59 5.31 22.66 720.6
16 73.98 -40.63 0.53 3143.11 163.05 40.74 144.7
17 121.88 64.97 0.95 6457.91 9.96 68.57 125.1
18 179.86 -30.46 2.18 17754.75 170.93 23.66 44.6
19 204.38 -57.86 1.60 12214.68 56.24 144.51 116.7
20 248.23 -3.81 0.89 5927.14 13.18 137.98 130.5

Table 6.3: Injected extrinsic binary parameters, including network SNR flnetwork

for the 20 binaries in our population. All spin and orientation-related parameters
are defined at a reference frequency of fref = 5Hz.

minimum/maximum component mass of 5M§ and 87M§ respectively, which are the me-

dian values of mmin, mmax as inferred from GWTC-3, and we wish to only sample masses

which represent a realistic mass range of the BBH population.

We keep drawing binary parameters ◊̨i until we reach i = 100, 000 binaries which sat-

isfy the mass cut conditions, and form a representative sample of the population inferred

from GWTC-3 using the GWTC-3 hypermodel. We then compute the SNR for each binary

in each detector, and impose a network SNR cut of flnetwork Ø 12, which is the chosen

detectability threshold. Additionally, we wish to avoid binaries whose network SNR is

dominated by CE as this could result in a poor sky localisation and may lead to poorly

constrained posteriors due to possible degeneracies between intrinsic and extrinsic pa-

rameters for precessing binaries. Therefore, we impose an additional criterion that either

flL+ Ø 6, or flV Ø 6, or both. Of the 100, 000 initial sample, we find that 524 meet these
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mass and SNR criteria.

Figure 6.6: Distribution of the detector frame total mass M in solar masses M§

and ‰p for the 20 binaries selected from the population, coloured by the inclination
angle ◊JN. These binary parameters were drawn from the inferred population from
GWTC-3 using the GWTC-3 hypermodel, and are subject to mass and SNR cuts as
described in the main text.

Even though more than 500 binaries satisfy our cuts, due to computational reasons

we randomly select only 20 of these binaries to form our final subset. The parameters

of these binaries are shown in Tabs. 6.2 and 6.3. The distribution of the detector-frame

total mass M and ‰p for these 20 selected binaries is shown in Fig. 6.6, coloured by the

inclination angle ◊JN. We see that our selection of binaries covers a wide mass range

between 22 M§ and 380 M§, with a preference towards heavier binaries than seen in

our current population as future GW detectors will allow us to observe binary mergers

at higher redshifts (see Eq. (2.66) for the relation between detector frame masses and

redshift). We also note that our binary sample includes a range of inclination angles

between almost perfectly aligned to anti-aligned with the orbital angular momentum, and

that the ‰p-distribution shows a preference toward moderate precession as expected given

the population, with a few binaries displaying more extreme precession of ‰p ≥ 0.5.

Fig. 6.7 shows the number of precession cycles calculated from Eq. (6.18) for each of

the 20 selected binaries for the three di�erent values of flow. The x-axis is ordered such
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Figure 6.7: Number of precession cycles –(flow, fISCO)/2fi for the 20 selected
binaries whose parameters are shown in Tabs. 6.2 and 6.3, computed as in Eq. 6.18.
We show the number precession cycles for each binary computed from three di�erent
values of flow: 20Hz in purple, 10Hz in teal, and 5Hz in orange. As the value of flow

decreases, the number of precession cycles observed increases for each binary.

that the numbers of precession cycles increases from right to left, but the binary indexes

correspond to those in Tabs. 6.2 and 6.3. As expected, the number of precession cycles

increases as flow decreases, and the binaries with smaller total masses spend more time

in-band and will therefore generally display more precession cycles.

We caution that due to small number statistics, these 20 binaries will have a slightly

di�erent distribution spin distribution than the underlying population from which they

were sampled. Therefore, we perform functional fits to the spin parameters of our 20 bi-

naries to determine the hyperparameter values that best describe them. Concretely, and

similarly to the fits for the underlying population median PPD, we use the Scipy curve

fit function to fit Beta distributions to both ‰1 and ‰2 to obtain hyperparameters for

the Beta Magnitudes hypermodel. For the Gaussian Spin hypermodel, we use the same

technique as for the underlying population fits of a 2D Gaussian fit to the 2D histogram

of ‰p, ‰e�. The hyperparameters we obtain are given in the fourth column of Tab. 6.4.

We note that for the spin magnitudes, the values for our injected population are similar

to those of the underlying population for three out of the four hyperparameters, which

167



6. CONSTRAINING PRECESSION IN THE POPULATION

are shown in the third column of the same table. Additionally, we also fit our selected 20

binaries to a bivariate Gaussian in ‰p and ‰e�, and obtain the corresponding hyperparam-

eters for the injected population also given in Tab. 6.4. These values vary slightly from

those of the underlying population. In particular, we find that the hypermodel means µ‰p

and µ‰e�
are shifted relative to the population they were initially drawn from, with our

20 binary population showing on average less precession, and more correlation between

‰p and ‰e�. The e�ect of the di�erences in these hyperparameter values can be seen in

Figs. 6.4, 6.5 where we plot the injected population distributions in purple alongside the

best-fit underlying population distributions in orange. Notably, the peak of the primary

spin magnitude is shifted more towards lower values, and the width of the secondary spin

distribution is narrower than for the underlying population. The distribution on ‰p is

also narrower, and shifted towards lower precession values, and the distribution of ‰e�

becomes slightly broader and more negative.

Hyper- Hyper- Population Injected
Prior

Recovered value

model parameter value value 5Hz 10Hz 20Hz

–‰1 1.63 1.09 U(1, 7) 1.86
+0.72
≠1.24 2.22

+1.31
≠0.94 3.87

+1.77
≠1.72

Beta –‰2 1.63 2.54 U(1, 7) 3.52
+1.85
≠1.67 4.40

+2.01
≠2.15 4.94

+1.74
≠2.27

Magnitudes —‰1 4.07 3.29 U(1, 10) 4.72
+3.15
≠1.99 6.06

+3.18
≠2.74 7.64

+2.11
≠3.43

—‰2 4.06 10.42 U(1, 25) 17.60
+6.63
≠8.62 16.81

+6.97
≠8.33 18.91

+5.32
≠8.97

Gaussian

µ‰e� 0.02 ≠0.06 U(≠1, 1) ≠0.01
+0.07
≠0.06 ≠0.01

+0.07
≠0.06 0.00

+0.05
≠0.05

‡‰e� 0.13 0.19 U(0, 1) 0.16
+0.05
≠0.08 0.16

+0.05
≠0.08 0.14

+0.04
≠0.07

µ‰p 0.24 0.15 U(0, 1) 0.18
+0.15
≠0.10 0.20

+0.16
≠0.10 0.29

+0.10
≠0.06

‡‰p 0.15 0.06 U(0, 1) 0.22
+0.09
≠0.16 0.23

+0.10
≠0.17 0.12

+0.05
≠0.14

fl 0.00 0.44
U(≠0.75,

0.33
+0.52
≠0.35 0.35

+0.52
≠0.34 0.05

+0.47
≠0.460.75)

Table 6.4: Injected and recovered values of the population hyperparameters for
each of the Beta Magnitudes and Gaussian spin models, for each of the flow

cuto�s of 5Hz, 10Hz and 20Hz. The ‘population values’ for the hypermodels are
the result of a fit to the population posterior predictive probability distribution
from which we drew our population of 20 binaries. The injected hyperparameter
values are the result of a functional fits of the corresponding hypermodel to the
20 binaries which were analysed. The recovered values show the median for each
hyperparameter, as well as the 90% credible interval.
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6.3.2 Selected Individual Binary Parameter Estimation Results

In this subsection, we present results of the parameter estimation for two of the binaries.

Figs. 6.8 and 6.9 show the mass and spin parameter posteriors respectively for binary 6 in

Tabs. 6.2 and 6.3. This binary lies towards the lower end of the total mass range covered

by our 20 binaries, has a relatively large value of ‰p at 0.49, and the number of precession

cycles that this binary undergoes lies towards the middle of our sample. We show the

90% 2D credible intervals and 1D posterior distributions for flow = 5Hz in orange, 10Hz

in teal and 20Hz in purple, with the true injected values from Tabs. 6.2 and 6.3 marked in

black. We note that all three of the analyses recover the mass parameters very well, with

the peaks of the 1D posterior distributions centred on the true injected values. The most

noticeable di�erence between the three distributions lies in the width of the 90% credible

intervals, particularly in the chirp mass M, and the total mass M . The 1D marginalised

posterior distribution for M has a 90% credible interval of 0.11 M§ for flow = 20Hz,

which shrinks dramatically to 0.02 M§ at 10Hz, and then 0.01 M§ at 5Hz, leading to

an accuracy improvement of an order of magnitude between 20Hz and 5Hz. Similarly,

the total mass M has a width of 0.27 M§ for flow = 20Hz, which then reduces by 50%

to 0.13 M§ as flow decreases to 10Hz, and reduces further to 0.12 M§ at 5Hz, a total

reduction of 55% in uncertainty. The component masses m1, m2 and mass ratio q show

more modest improvements, with the 90% credible width reducing between 20Hz and 5Hz

by 22% for m1 and and 30% for m2, and q reducing by 23% between 20Hz and 5Hz.

The posterior distributions for the spin parameters for this binary are shown in Fig. 6.9,

similarly showing 20Hz in purple, 10Hz in teal, 5Hz in orange, and the injected values

in black. Again, we observe a clear overall improvement in the 90% credible interval

widths of the recovered parameters as flow decreases. The 90% credible width of the

marginalised posteriors for the spin magnitudes ‰1 and ‰2 are 0.184 and 0.157 at flow =

20Hz respectively, which then reduces by 58% for ‰1 and 51% for ‰2 as flow is lowered to

10Hz, and reduces to 34% (‰1) and 40% (‰2) of the 20Hz width at 5Hz. The spin tilts

also reduce from a width of 9.3 and 33.3 degrees for ◊1 and ◊2 at 20Hz, to just 6 and 12
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degrees at 5Hz. The largest improvements can be seen in the e�ective spin parameters ‰p

and ‰p whose widths reduce by 76% and 67% respectively between 20Hz and 5Hz.

Furthermore, we find that the median values of the spin parameters are recovered

more accurately as flow is decreased. For example, the median posterior value for ‰p at

flow = 20Hz is 0.46, which is an o�set (bias) of 0.03 compared to the injected value of 0.49

in Tab. 6.2. This reduces to 0.02 at 10Hz, where the recovered median value is 0.51, and

further to 0.01 at 5Hz, where the median is 0.50. The median o�set in ‰1 also decrease,

from 0.04, to 0.02, to 0.01, and we see similar trends across all the spin parameters. Our

results verify that the combination of higher SNR and more observed precession cycles

leads to significant improvements in the recovered spin posteriors.

In Figs. 6.10 and 6.11 we show results for a second binary, binary 5 in Tabs. 6.2 and

6.3, which is the heaviest of all binaries in our sample and shows the fewest number of

precession cycles in Fig. 6.7. While we find a relatively good recovery of the injected mass

values at all values of flow as seen in Fig. 6.10, there are improvements especially in the

chirp mass M. The component masses m1 and m2 show modest improvements, with the

90% credible interval width of m1 and m2 decreasing from 11.8 M§ and 8.8 M§ at 20Hz

respectively, to 7.2 M§ and 7.5 M§ at 10Hz, an uncertainty reduction of 39% in m1 and

15% in m2. At 5Hz, the m2 reduces slightly further to 7.2 M§, while the m1 stays the

same as at 10Hz. We see similar trends in the other mass parameters, namely that there

is a significant reduction in the posterior widths between 20Hz and 10Hz, and then little

change between 10Hz and 5Hz. The largest di�erence between 10Hz and 5Hz can be seen

in the chirp mass M, where the 20Hz 90% credible interval width of 4.1 M§ reduces to

2.6 M§ at 10Hz, a decrease of 40%. Similarly, the total mass width decreases by 37%

from 9.7 M§ at 20Hz to 5.8 M§ at 10Hz. Lastly, the mass ratio q width reduces by 33%

from 0.09 at 20Hz to 0.06 at 10Hz.

Lastly, we note that similarly to binary 6, the biases in the recovered median spin

parameters decreases as flow decreases. A clear example is shown in Fig. 6.11 for the

primary spin tilt ◊1. The di�erence between the true injected value and the median
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Figure 6.8: 90% 2D credible intervals and 1D posterior distributions for the
detector-frame mass parameters of representative binary 6 for each of the 3 flow

values. We show results for flow = 20Hz in purple, 10Hz in teal, and 5Hz in orange,
and plot the true injected values as shown in Tab. 6.2 in black. As flow decreases,
the injected values are better recovered with lower uncertainty.

posterior value decreases from 17 degrees at 20Hz, to 6 degrees at 10Hz, down to just 2

degrees at 5Hz. Similarly, the bias in ‰p reduces from 0.2 at 20Hz, to 0.05 at 10Hz, and

0.04 at 5Hz. We also see a decreasing bias in the secondary spin magnitude, from 0.26 at

20Hz, down to 0.1 at 10Hz, and 0.05 at 5Hz. An exception to this trend is the secondary

tilt angle ◊2, for which none of the three flow values accurately recovers the injected value

at the peak of the 1D marginalised posterior distributions.
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Figure 6.9: Parameter estimation results for spin parameters for representative
binary 6 for each of the 3 flow values. We show results for flow = 20Hz in purple,
10Hz in teal, and 5Hz in orange, and plot the true injected values as shown in
Tab. 6.2 in black. The injected and recovered spin values for the are specified
at a reference frequency of 5Hz. As flow decreases, the injected values are better
recovered with lower uncertainty.

In Fig. 6.12 we show the bias and 90% credible interval widths for ‰e� in the left panel,

and ‰p on the right for all 20 binaries in our sample. In order to show all 20 binaries

on the same figure, we subtract from each posterior sample the true injected value of

the parameter for the binary in question. As an example, for binary 3 which has a true

injected ‰p value of 0.13 as shown in Tab. 6.2, we subtract 0.13 from all the ‰p posterior

samples for this binary. We call this di�erence �‰p, which is plotted in the right panel
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Figure 6.10: 90% 2D credible intervals and 1D posterior distributions for the
detector-frame mass parameters of binary 5 for each of the 3 flow values. We show
results for flow = 20Hz in purple, 10Hz in teal, and 5Hz in orange, and plot the
true injected values as shown in Tab. 6.2 in black. As flow decreases, the injected
values are better recovered with lower uncertainty.

of Fig. 6.12. Analogously, we define �‰e� which is plotted on the left. We plot the 90%

credible intervals on �‰e� and �‰e� as shaded bands. The coloured points show the

di�erence between the maximum a posteriori probability samples (as defined in Sec. 2.5)

and the true injected values.

As in previous figures, we show the analyses with flow = 20Hz in purple, 10Hz in teal

and 5Hz in orange, and analogously to Fig. 6.7 we have ordered the binaries such that the
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Figure 6.11: Parameter estimation results for spin parameters for binary 5 for
each of the 3 flow values. We show results for flow = 20Hz in purple, 10Hz in
teal, and 5Hz in orange, and plot the true injected values as shown in Tab. 6.2 in
black. The injected and recovered spin values for the are specified at a reference
frequency of 5Hz. As flow decreases, the injected values are better recovered with
lower uncertainty.

90% credible widths for the 5Hz analyses increase from left to right for ease of reading.

We first note that as flow is lowered, we see a general trend of the 90% credible interval

widths decreasing for both the ‰p and ‰e� posteriors across the 20 binaries. This e�ect is

more pronounced in ‰e� than ‰p, particularly for binaries where ‰e� is negative such as

binaries 3, 4, 5 and 8. These binaries also each have relatively high total masses. This

suggests that for binaries with shorter GW signals in band due to their high mass and
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Figure 6.12: Left: �‰e� for the 20 selected binaries, defined as the deviation of the
posterior samples from the true injected ‰e� value for each binary. Right: Results of
�‰p for the individual 20 binaries, defined as the deviation of the posterior samples
from the true injected ‰p value for each binary. We show the 90% credible interval
widths as shaded bands, and the maximum posterior points as coloured markers,
for flow = 20Hz in orange, 10Hz in purple, and 5Hz in green. We see a general
trend that as flow decreases, the widths of the 90% credible interval also decrease.

negative ‰e�, having a lower cuto� frequency flow is even more crucial to precisely measure

the binary spins. For ‰p in the right panel there is not as clear a trend between the value

of ‰p and the recovered width of the posteriors. But we also note that for all binaries

except binary 19, which has the smallest ‰p value of our population (see Tab. 6.2), the

true injected value lies within the 90% credible interval for all analyses with flow = 5Hz.

The 10Hz analyses has a single binary where the true value does not lie in the 90% credible

interval, binary 11, which again has a relatively low ‰p value at 0.11 as seen in Tab. 6.2.

However, as flow increases to 20Hz, this number increases to 6 binaries where the true

value lies outside the 90% credible interval. These 6 binaries include binaries 19, 11, and

15, all of which have relatively low ‰p values. This suggests that especially for binaries

where there is little precession, a lower minimum frequency of flow allows us to measure

‰p precisely and without bias.

We also show in Fig. 6.13 �‰1 (left) and �‰2 for the 20 binaries, defined analogously

as for �‰p and �‰e�. Again we show results for 20Hz in orange, 10Hz in purple and 5Hz

in green, and plot the 90% credible intervals as shaded bands and the maximum posterior

probability points as coloured markers. We order the binaries such that �‰1 and �‰2 for
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the 5Hz maximum posterior points increases from left to right. While the trend is not as

clear for the spin magnitudes as for the e�ective spin parameters shown in Fig. 6.12, we

do see that in general, the values of �‰p and �‰e� at the maximum posterior points are

smallest for flow = 5Hz, and that the 90% credible interval widths decrease with lower

minimum frequency cuto�.

Figure 6.13: Left: �‰1 for the 20 selected binaries, defined as the deviation of the
posterior samples from the true injected ‰1 value for each binary. Right: Results of
‰2 for the individual 20 binaries, defined as the deviation of the posterior samples
from the true injected ‰2 value for each binary. We show the 90% credible interval
widths as shaded bands, and the maximum posterior points as coloured markers,
for flow = 20Hz in orange, 10Hz in purple, and 5Hz in green. We see a general
trend that as flow decreases, the widths of the 90% credible interval also decrease.

In summary, in this section we have shown that for our sample of 20 binaries, by

decreasing the value of flow we gain tighter constraints on our recovered spin parameters

for each individual binary. We have shown that the 90% credible interval widths for the

spin parameters decrease by reducing the minimum frequency cuto�, and that biases in

the recovered spin parameters also decrease. In the next section we determine if these

tighter constraints and better recovered spins for the individual binaries will result in

more accurate inference of the spin distribution across the entire population.

6.3.3 Population Inference Results

In the previous subsection we presented parameter estimation results for individual bina-

ries, showing that as flow decreases, the accuracy with which we can measure the mass
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and spin parameters improves. Now we assess whether this improvement can also be seen

when estimating the hyperparameters that describe underlying population of binaries.

We make use of the hierarchical Bayesian formalism outlined in Sec. 6.1, and choose two

di�erent hypermodels for our population spin distributions: i) the Beta Magnitudes hy-

permodel as described in Subsec. 6.1.1, and ii) the Gaussian hypermodel of Subsec. 6.1.2.

We then perform three analyses for each hypermodel, corresponding to each of the three

flow values from which we performed our individual binary estimation as described in

Sec. 6.3.2. We use the gwpopulation [250] Python package to perform the hierarchical

analysis, for the sampling we use Dynesty within Bilby similarly to the individual event

analyses in Sec. 6.2 and Subsec. 6.3.3. The priors for the population hyperparameters

are detailed in Tab. 6.4, and we use (rounded to the nearest integer) as our prior bounds

for the Beta Magnitudes hypermodel the minimum and maximum samples for the hy-

perparameters contained within the GWTC-3 data release [251] except for —‰2
, where we

raise our prior upper bound to 25. This accounts for the fact that our injected popula-

tion of 20 binaries has a —‰2
value of 10.42, and so an upper prior boundary of 10 would

not be su�cient. For the Gaussian hypermodel we use the same prior bounds as used

in Ref. [35]. In the remainder of the section, we present our results for the population

inference, first the Gaussian Spin hypermodel results in Subsubsec. 6.3.3 and then the

Beta Magnitudes results in Subsubsec. 6.3.3.

E�ective Spin Parameter Results

The results for the Gaussian hypermodel for the e�ective spin parameters are shown in

Fig. 6.14, where we show the 1D marginalised posterior distributions for each of the five

hyperparameters �̨ = {µ‰e�
, ‡‰e�

, µ‰p , ‡‰p , fl}, as well as the 2D 90% credible contours.

As before, we show the results of the analysis with flow = 20Hz in purple, 10Hz in teal,

and 5Hz in orange. The grey lines mark the true median values of the hyperparameters as

taken from the underlying distribution from which we drew our population of 20 binaries,

ie. the hyperparameter values shown in column 3 of Tab. 6.4. The black lines mark
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Figure 6.14: Results of population inference with the Gaussian Spin hypermodel.
We show the posteriors on the hyperparameters {µ‰e�

, ‡‰e�
, µ‰p , ‡‰p , fl} for each of

the three flow values, 5Hz in orange, 10Hz in teal and 20Hz in purple. We plot the
true injected values of these hyperparameters from our population of 20 binaries
in black, and the values taken from the underlying population from which our 20
binaries were drawn in grey.

the median hyperparameter values for the population of 20 binaries, i.e. the injected

hyperparameter values shown in column 4 of Tab. 6.4. In Tab. 6.4 we also list the medians

and 90% credible interval bounds for the recovered posteriors on the five hyperparameters.

We first note that hyperparameters inferred from the the 20Hz analysis seems to agree

better with the true population hyperparameters. However, as discussed below, this is

largely driven by the priors. Both the 10Hz and 5Hz analyses are more informative
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with the inferred hyperparameters agreeing with the injected population. Whilst this is

seemingly biased from the underlying population, as we incorporate more binaries, we

would expect both these analyses to converge on the true population hyperparameters

quicker. The reason for the 20Hz analysis better recovering the underlying population

hyperparameters can be interpreted as follows. With an flow of 20Hz in comparison to

10Hz or 5Hz, we have already seen in Secs. 6.2 and 6.3 that the individual event posteriors

on the spin parameters are broader due to a combination of lower SNR and fewer observed

precession cycles. Therefore, the results for the individual binaries are prior-driven, and

given the priors we have used which are uniform in spin magnitudes and isotropic in

direction, the prior on ‰e� resembles a Gaussian centred on zero (see eg. Ref. [252]). The

prior on ‰p has a peak at around 0.33, and the two e�ective spin distributions will be

uncorrelated. Therefore the prior-driven values for the hyperparameters correspond to

µ‰e�
= 0, µ‰p = 0.33, and fl = 0, which lie very close to the recovered median posterior

values for the 20Hz results in Tab. 6.4. Therefore, instead of recovering the underlying

population hyperparameter values, the 20Hz analysis instead uncovers the expected results

from individual binaries where the event posteriors are prior-driven.

We then note that due to being prior-driven, the 20Hz analysis better recovers the

hyperparameters for the underlying population from which we drew our 20 binaries, which

are shown by the grey lines in Fig. 6.14. For example, the true population fl value

of 0 lies closer to the median posterior value from the 20Hz analysis, which is 0.05,

and is comfortably contained within the 1D marginalised posterior 90% credible interval

for 20Hz. In contrast, the median posterior values for the 5Hz and 10Hz are 0.33 and

0.35 respectively, and the population value lies just within the 90% credible interval

for the 5Hz results, and just outside the interval for the 10Hz. Another example can

be seen in the hyperparameter µ‰e�
, where the median posterior value for 20Hz is 0.0,

which better matches the population value of 0.02 than the median recovered values for

5Hz and 10Hz, which both equal ≠0.01. We also note that the 90% credible interval

for this hyperparameter is narrower for the 20Hz analysis than either the 5Hz or 10Hz.
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Therefore the 20Hz analysis appears to recover the underlying population width of the

Gaussian on ‰e� more accurately and with less uncertainty than the 5Hz or 10Hz analyses.

Additionally, while the underlying population values for ‡‰e�
and ‡‰p are contained within

the 90% credible widths for all three flow values, for both hyperparameters the median

posterior value for the 20Hz analysis lies closer to the population value than either the

10Hz or 5Hz.

We now consider how well the analyses are able to recover the hyperparameter values

for the population of 20 binaries that we actually injected, which are shown in column

4 of Tab. 6.4. These injected values are shown in black in Fig. 6.14. We find that the

5Hz most accurately recovers the injected value of µ‰p = 0.15, as this analysis has a

median posterior value of 0.18+0.15
≠0.10, compared to the 10Hz median of 0.2+0.16

≠0.10, and the

20Hz of 0.29+0.10
≠0.06 (though this 20Hz median value is likely prior-driven). Additionally, we

find that as flow decreases to 10Hz and 5Hz we more accurately recover the correlation

parameter fl, as the median shifts away from the prior-driven 20Hz value of 0.05 to 0.35

at 10Hz and 0.33 at 5Hz. We note that interestingly, our 90% credible widths upon

the recovered hyperparameters stay consistent across the three low frequency values, and

that the dominant e�ect of lowering flow is to move the peak of the posterior distribution

towards the injected values, as opposed to reducing the uncertainty on these recovered

values with narrower posteriors.

We remark that although the analyses with flow = 5Hz and 10Hz do recover the in-

jected population hyperparameters more faithfully, we caveat that the underlying data

is not well represented by a bivariate Gaussian. We have already seen in Fig. 6.5 that

the underlying population distributions di�er significantly from the best-fitting bivari-

ate Gaussian. This therefore places a limitation on the accuracy we can achieve as we

would not expect to recover the population distribution perfectly even with significantly

increased information.
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Figure 6.15: Results of population inference with the Beta Magnitudes hyper-
model. We show the posteriors on the hyperparameters {–‰1

, –‰1
, —‰2

, —‰2
} for each

of the three flow values, 5Hz in orange, 10Hz in teal and 20Hz in purple. We plot
the true injected values of these hyperparameters from our population of 20 binaries
in black, and the values taken from the underlying population from which our 20
binaries were drawn in grey.

Spin Magnitude Results

The results for the Beta Magnitudes hypermodel are summarised in Fig. 6.15, where we

show the 1D marginalised posterior distributions and 2D 90% credible interval contours

for each of the four hyperparameters �̨ = {–‰1
, –‰2

, —‰1
, —‰2

}, with the 20Hz results in

purple, 10Hz in teal and 5Hz in orange. We show the true values from the underlying
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population distribution as detailed in column 3 of Tab. 6.4 in grey, and the true injected

values of the hyperparameters from our population of 20 binaries in black. The recovered

medians and 90% credible interval bounds for each of the three flow values can be found

in Tab. 6.4.

We first consider the recovered hyperparameters for the distribution of the primary

spin magnitude, –‰1
and —‰1

. For both of these hyperparameters we find that in all our

analyses the recovered hyperposterior medians overestimate the true values. The peaks

of the 1D marginalised posterior distributions for –‰1
and —‰1

lie consistently to the right

of the true injected values shown by the black vertical lines. However, we also see that

as flow decreases, this e�ect reduces. The di�erence in –‰1
between the median recovered

posterior value and the true injected value of 1.09 reduces from 2.78 at flow = 20Hz, to

1.13 at 10Hz, to 0.77 at 5Hz, a total reduction of 72% in the bias between the 20Hz and

5Hz analyses. Similarly, the bias in —‰1
between the median posterior and true injected

value of 3.29 decreases from 4.35 decreases from at 20Hz, to 2.77 at 10Hz, to 1.43 at 5Hz,

a total reduction of 57% between 20Hz and 5Hz. We also find that the widths of the

90% credible intervals on –‰1
decrease with lower flow. For the 20Hz analysis, the 90%

credible interval width is 3.49, which then reduces by 36% to 2.25 as flow lowers to 10Hz.

The width at 5Hz is 1.96, which is a total reduction of 44% compared to 20Hz. For —‰1
,

the widths of the 90% interval do not show the same decreasing trend, but stay broadly

consistent across the di�erent values of flow. The width increases slightly from 5.54 at

20Hz to 5.92 at 10Hz, before reducing slightly to 5.14 at 5Hz. However, we note that

the true injected —‰1
of 3.29 is not contained within the 90% credible intervals at 104Hz

or 20Hz, but is contained within the interval at 5Hz. Similarly, the true –‰1
injected

value of 1.09 is not contained within the 90% credible intervals of either the 20Hz or

10Hz analyses, but is within the 5Hz interval. Therefore, only with an flow of 5Hz do

we actually recover the injected primary spin magnitude distribution at the 90% level of

the 1D marginalised posterior distributions. If we consider the 2D 90% contour of –‰1

and —‰1
, the true injected value in black is contained within the 90% contours of both
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the 5Hz and 10Hz analyses, but not the 20Hz. Therefore we see that a low frequency

cuto� of 20Hz in this case is not su�cient to accurately recover the injected population

distribution for ‰1.

We now consider the posteriors for the hyperparameters of the secondary spin mag-

nitude distribution, –‰2
and —‰2

. It can be seen from the definitions of ‰e� in Eq. (2.93)

and ‰p in Eq. (3.15) that the contributions of the primary and secondary spins upon the

waveform are weighted by the BH masses, for example in Eq. (2.93) the secondary spin

contribution appears as m2‰2Î/M . Therefore, as m2 Æ m1, we expect the imprint of the

secondary spin upon the waveform to be subdominant compared to the primary spin, and

so the secondary spin will be more di�cult to constrain for an individual event and on the

population level. With this is mind, it is unsurprising that we see wider posteriors on –‰2

and —‰2
than –‰1

and —‰1
across the three values of flow, and less significant improvements

as flow decreases. While we do not see as noticeable an improvement in the constraints on

these hyperparameters as for the primary spin magnitude hyperparameters, we note that

similarly to –‰1
and —‰1

, the tendency of our analysis to overestimate the true value of

–‰2
decreases as flow is lowered. The di�erence between the median recovered posterior

value for –‰2
and the true injected value of 2.54 reduces from 2.4 at 20Hz, to 1.86 at

10Hz, to 0.98 at 5Hz, which is a reduction of 54% between 20Hz and 10Hz. We see a

slight narrowing of the 1D marginalised posterior width on –‰2
of 12% between 20Hz and

10Hz, though there is a slight increase in width between 20Hz and 10Hz by 4%. We also

note that the true injected value of 2.54 is not contained within the 90% credible interval

of the 1D marginalised posterior for –‰2
at 20Hz, but it is contained with the 90% inter-

val for the 10Hz and 5Hz analyses. The only hyperparameter in the Beta Magnitudes

analysis which does not show any noticeable improvement with lower flow is —‰2
. The 1D

marginalised posteriors for this parameter remain mostly unconstrained for all values of

flow, with wide and comparably-sized 90% credible interval widths across all 3 frequency

cuto�s.

Interestingly, we see evidence of a degeneracy between –‰1
and —‰1

, and also between
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–‰2
and —‰2

. This is evidenced by the large diagonal 2D contours for these pairs of

parameters. We interpret this as follows: for a Beta distribution described by the shape

parameters – Ø 1 and — Ø 1, the mean of the distribution is given by –/(– + —), and the

variance is –—/ [(– + — + 1)2(– + — + 1)]. Therefore if the variance of our recovered spin

distribution is uncertain, but the mean is well constrained, this places a constraint on the

ratio —/–, but not on the individual shape parameters, leading to a degeneracy such as

the ones seen in Fig. 6.15. We therefore hypothesise from these results that across the

three values of flow, while we are constraining the mean of the spin distribution with this

binary population, we are not e�ectively constraining its width, potentially due to the

low number of binaries in our sample.

As mentioned above, and in contrast to the Gaussian Spin hypermodel results, as

flow decreases the –‰1
and —‰1

hyperparameters for the ‰1 distribution appear to recover

the values from underlying population (plotted in grey in Fig. 6.15) as opposed to the

true hyperparameter values from the subset of 20 binaries we injected. To investigate

this, in Fig. 6.16 we show the median recovered Beta distributions for the primary spin

magnitude ‰1 on the left side, and for ‰2 on the right, plotted in orange in the top row

for the results where flow = 5Hz, in teal in the middle row for 10Hz, and in purple on

the bottom row for 20Hz. These median Beta distributions are obtained by taking the

median posterior samples for –‰i and —‰i for each value of flow and evaluating the resulting

distributions given by Eq. (6.14). We also show in Fig. 6.16 the Beta distributions for ‰1

and ‰2 given by the hyperparameter values from the injected binaries in black (where the

values of –‰i and —‰i are given in column 4 of Tab. 6.4), and the values taken from the

underlying population from which we chose our 20 binaries in grey (column 3 in Tab. 6.1).

Finally, we plot the histograms of the individual event posteriors for ‰1 and ‰2 for each

of the 20 binaries, for each value of flow. At flow = 20Hz, the individual binary posteriors

on ‰1 mainly appear to be broad, and as flow is decreased to 10Hz and then 5Hz, these

distributions narrow as discussed in Subsec. 6.3.2. However, at 5Hz many of the binaries

with moderate values of ‰1 still appear to have broad posterior distributions, in contrast to
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Figure 6.16: Posteriors for primary spin magnitude ‰1 on the left, and secondary
spin magnitude ‰2 on the right. The top row shows results with flow = 5Hz, the
middle row flow = 10Hz, and the bottom row flow = 20Hz. The fainter histograms
show individual event posteriors of spin magnitudes for the 20 binaries, plotted
in light orange for 5Hz, light teal for 10Hz, and light purple for 20Hz. We also
show, plotted in thicker orange, teal and purple, the Beta distributions of the
median recovered posterior samples of {–‰1

, —‰1
, –‰2

, —‰2
} for each value of flow.

In grey, we show Beta distributions for the primary and spin magnitude with the
underlying population hyperparameter values (column 3 of Tab. 6.4), and in black
are distributions with the injected hyperparameter values for the population of 20
binaries (column 4 of Tab. 6.4).
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the small number of binaries with high primary spin magnitudes whose posteriors narrow

with decreasing fe�. This has the e�ect of adding more posterior weight to higher ‰1 values

relative to low ones, and so will force the recovered population distribution of ‰1 towards

larger values relative to the true injected population distribution. Therefore, although the

peak of the recovered median distribution does tend towards lower values as flow decreases

and the broad individual ‰1 posteriors become narrower, the median distribution at 5Hz

still peaks at larger values of ‰1 than the true population of 20 binaries would suggest.

Consequently at flow decreases the recovered Beta distribution more closely resembles the

distribution of the underlying population in grey than the injected population in black.

In contrast to this, we see on the right side of Fig. 6.16 that the peak of the median

recovered Beta distribution for ‰2 does tend towards that of our injected population in

black as flow decreases. This is because, unlike for ‰1, the individual event posteriors for

events with low ‰2 values are localised better with decreasing flow, and so the peak of

the distribution moves towards lower values. We finally note that while the peak of the

recovered median distribution at 5Hz closely matches that of the injected population, the

width is significantly narrower. This is as a result of the unconstrained —‰2
value which

has significant support at high values, and further supports the hypothesis that there is

a degeneracy between the shape parameters –‰i and —‰i .

6.4 Discussion

In this Chapter we have assessed the impact of a varying low frequency cuto� upon

constraining precession in a population of BBHs observed by next-generation detector

networks. We first introduced the formalism of hierarchical inference in Sec. 6.1, and

outlined the specific population hypermodels we use in Subsecs. 6.1.1 and Subsec. 6.1.2.

To disentangle the e�ects of increasing the SNR and a larger number of observed pre-

cession cycles when decreasing flow, we first performed systematic series of injections for

a GW190521-like binary in Sec. 6.2. We perform one series where as flow was lowered,
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the network SNR flnetwork increased due to the longer observed signal, and a second series

where flow was varied but dL was also adjusted to fix the network SNR. We observed

that, as expected, as we lower the minimum cuto� frequency and the resulting signal

SNR increases, this leads to reduced uncertainty on the recovered binary parameters.

Specifically, we found that our results for the spins with flow = 20Hz were prior-driven,

whereas the analyses with 10Hz and 5Hz more e�ectively recovered the injected binary

parameters. Additionally, we also showed in Fig. 6.3 that if we fix the SNR while varying

flow, we also see decreasing uncertainty in the recovered posteriors due to the increased

length of signal and increased number of observed precession cycles. We may therefore

conclude that with better low frequency content there are two complementary e�ects at

play that reduce the uncertainty in the inferred parameters: the increased SNR due to the

longer signal, and the information gained from observing more of the binary evolution.

We also note that for very high mass events such as GW190521, we observe only the

merger-ringdown in-band with current detectors. Lowering the minimum frequency to

10Hz or 5Hz therefore brings the inspiral into sensitivity, allowing important constraints

to be made on the population of IMBH binaries and for us to explore the upper mass gap.

We then assessed the impact of a lower frequency cuto� on the inference of the astro-

physical population of binaries in Sec. 6.3. To do so, we drew a representative sample of

20 binaries from the population inferred from GWTC-3, but then noted in Subsec. 6.3.1

that due to small number statistics, our population of 20 binaries will have a di�erent

distribution than the true underlying population, and so di�erent values for the hyper-

parameters for each population hypermodel. We fit our sample of 20 binaries to each of

the hypermodel distributions to obtain more representative injected values for the hyper-

parameters, but noted that a bivariate Gaussian in the e�ective spin parameters is not a

good fit to either the underlying population distribution or our subset. We then showed

our results for the individual binary parameter estimation in Subsec. 6.3.2 highlighting

the mass and spin results for two specific binaries, and saw that in general, a lower value

of flow leads to better recovered spin parameters with smaller uncertainty, and that this
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e�ect is particularly pronounced for the e�ective spin parameters and especially ‰e�.

We then used this sample of 20 binaries to perform population inference for two dif-

ferent spin hypermodels in Sec. 6.3. We presented our results for the Gaussian Spin hy-

permodel in Subsec. 6.3.3, and for the Beta Magnitudes hypermodel in Subsubsec. 6.3.3.

For the Gaussian Spin hypermodel, we found that a lower frequency cuto� led to a better

localisation of the injected population hyperparameters, as the bias between the median

recovered values and the true values decreased with decreasing flow. We also saw that

while the 20Hz analysis appeared to better recover the hyperparameters of the underlying

population of binaries from which we drew our sample of 20, these results were actually

prior-driven. However, as flow decreased the posteriors became constrained away from

the prior and better matched the injected hyperparameter values. We note, however,

that since the bivariate Gaussian on ‰p and ‰e� is not a good fit to either the underlying

population distribution nor the distribution of our 20 binaries, this hypermodel has its

limitations and the results may not accurately reflect the potential improvement to be

gained in constraining the e�ective spin parameters at lower flow. We leave analysis using

di�erent e�ective spin hypermodels to future work.

For the Beta Magnitudes hypermodel, we found that the dominant e�ect of lowering

the cuto� frequency was to reduce the bias between the recovered hyperparameter poste-

riors and the true injected value for the population of 20 binaries we considered, for three

out of the four hyperparameters which make up this hypermodel. We also found for the

primary spin magnitude ‰1 that a lower flow led to tighter constraints on the shape of the

population distribution, as evidenced by narrowing 90% credible interval widths for the

hyperparameters –‰1
and —‰1

. We found that our analyses consistently overestimated the

values of all the hyperparameters for this hypermodel, meaning that the recovered spin

distributions are narrower than those injected.

As we only considered a population of 20 binaries in this work for reasons of computa-

tional cost, we are limited by small number statistics in our analyses. We have quantified

this e�ect by calculating the di�erent hyperparameter values of our injected population as
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well as the underlying population distribution we drew from, and choosing these injected

values as our true values to recover. However, we note that we have not taken selection ef-

fects into account in our Bayesian hierarchical analyses [233–235], which may go some way

towards helping recover the underlying population distribution. Next-generation ground-

based detectors like ET or CE are expected to observe ≥ 105
≠106 BBH mergers per year

[253], and so these small number statistics will not come into play as we have seen here,

but selection e�ects will need to be carefully considered to ensure unbiased population

inference.

We also note that we have used the same 20 binaries in the analysis for each value of

flow. In a more realistic scenario, the number of detected BBH mergers would increase

with better low frequency sensitivity, as more events pass the SNR threshold for detection.

A larger population with lower flow would feasibly result in better constraints on the

population spin distributions, leading to narrower distributions on the hyperparameters.

This may explain why the dominant e�ect we have seen in our results is that the bias

between the true injected value and the median posterior values decreases with flow, while

the posterior widths remains approximately constant: We are more accurately recovering

but not more precisely constraining the population spin distributions.

The next generation of ground-based GW detectors will facilitate a dramatic change

in the number of BBH merger events we detect, as well as the accuracy with which we

are able to recover their binary source parameters. Though the exact low frequency

sensitivity of these instruments remains uncertain, we have shown that in order to take

full advantage of these detections to accurately constrain precession and spin distributions

of the population, a low frequency cuto� lower than 20Hz may be critical, with further

improved prospects for population measurements with flow as low as 5Hz.
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7. Conclusion

No confident detection of precession in a BBH merger has yet been made. Despite promis-

ing candidate events such as GW190521 [37] and GW200129 [38], inference of precession

is obfuscated by the short length of the GW190521 signal due to its high mass [37], and

detection of precession in GW200129 is greatly dependent upon data quality considera-

tions [217] and precessing waveform systematics [218]. This lack of a confident detection is

in contrast with measurements of precession on a population level [13, 34]. Consequently,

with the fourth LVK observing run just beginning we look towards future observations of

unambiguously precessing binaries, both with current instruments and in next-generation

detector networks.

The extraction of astrophysical information from BBH merger GW signals is predi-

cated on the availability of waveform models. In order to observe and constrain astro-

physical phenomena such as spin precession and higher modes, waveform models need

to have these phenomena built into them. Additionally, waveform systematics can have

significant impact on inference of precession, for example as was seen with GW200129

[218]. Therefore calibrating semianalytic waveform models to precessing NR including

higher modes to ensure their accuracy is crucial. In Chap. 4, we developed and tested

a precessing spin dimensional reduction that faithfully matches precessing higher-mode

waveforms in the strong-field regime with fewer spin degrees of freedom. This e�ective

precession spin provides a promising pathway towards meaningful calibration of multi-

modal precessing semianalytic waveform models to precessing NR, which could reduce

precessing waveform systematics for future detections.

Completeness and accuracy of waveform models can come at the cost of computational

e�ciency. A typical PE run for a BBH comprises around 106
≠ 108 waveform evaluations,

so we need to ensure our models e�cient enough for practical use. Surrogate modelling is a

technique used to build models which are faithful to an underlying (accurate and physically

complete) waveform model, but can be evaluated much more e�ciently. In Chap. 5 we
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built and tested a surrogate model of the precessing higher mode EOB model SEOBNRv4PHM

[48]. Our model SEOBNN_v4PHM_4dq2 is accurate to the underlying model over its training

parameter space range, and utilises artificial neural networks to achieve speeds two orders

of magnitude faster than SEOBNRv4PHM. The neural network implementation also allows for

leverage of GPUs, to achieve a further 50 times speedup. If we take waveform evaluations

to be the dominant cost of a PE analysis, this significant speed up is equivalent to reducing

run time from 2 weeks to just 4 minutes.

Looking towards the future of GW science, we anticipate a network of next-generation

ground-based detectors with greatly improved sensitivity compared to current instruments

[225, 226]. We have seen with GW190521 that very heavy binaries with extremely short

signals leave room for many alternative interpretations to a quasicircular precessing BBH

merger [210–216], and so improved low frequency sensitivity of next-generation detectors

could have a significant impact upon constraining precession, both for individual events

and across the binary population. In Chap. 6 we assessed the impact of di�erent minimum

cuto� frequencies flow upon our ability to constrain precession for individual binaries and

across a population of 20 BBHs. We found that a lower frequency of 5Hz or even 10Hz as

opposed to 20Hz allows us to more accurately measure the population spin distributions,

even with a relatively small population. Next-generation detectors are expected to have

improved low frequency sensitivity through cryogenic technology and reduced seismic

noise, though the exact minimum frequency cuto� is still uncertain. We have shown that

improving the sensitivity below 20Hz, will have a significant impact upon our ability to

measure the true BBH population spin distributions and subsequently constrain formation

channels of BBHs [21–29, 31–36].
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