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Abstract
Continuous gravitational waves from non-axisymmetric spinning neutron stars

are among the most interesting, although still undetected, targets of the Advanced
LIGO-Virgo and KAGRA detectors. The search for this class of signals is difficult
due to their expected weakness, and can be very computationally expensive when
the source parameters are not known.

Stochastic gravitational-wave background searches use fast and consolidated
cross-correlation techniques to search for either a stochastic background of gravi-
tational waves or persistent gravitational waves in specific sky directions. Recent
investigations have shown that stochastic directional searches have the ability to
detect continuous waves as well, with less sensitivity than continuous waves searches,
but with low computing requirements.

Using the algorithms from both the specific continuous-wave searches and the
stochastic directional ones, in this thesis I present an approach that aims to improve
the efficiency of the data analysis applied to the continuous-wave field.

Using the high parallel computing efficiency and computational power of the
modern Graphics Processing Units (GPUs), I show how an all-sky search algorithm
has been ported to GPUs. This work brought to a speed-up of all-sky searches for
periodic signals by an order of magnitude, in terms of single device computational
time. In addition, I describe a joint stochastic-background and continuous-wave
pipeline chain. I managed to combine the robustness of the stochastic cross-
correlation searches, used to quickly identify continuous-wave signals, to the accuracy
of the continuous waves dedicated codes to properly follow up interesting candidates.
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Introduction

Gravitational-wave physics started its centenary story with the Theory of General
Relativity by Albert Einstein (Einstein, 1918), in the second decade of the 20th
century. Gravitational waves are perturbations of the space-time metric traveling
at the speed of light. When they cross a region of space, their effect is to shrink the
separation between two points, while relaxing the orthogonal direction, similarly to
what happens when we compress a ring made of a flexible material. In the case of
gravitational waves, the action is on the metric itself.

This effect is very tiny and, once theorized, for many years it has been impossible
to have direct or indirect observation of their existence. The first breakthrough
came from Russell A. Hulse and Joseph H. Taylor (Hulse et al., 1975; Taylor et al.,
1976) which, at the turn of the mid-1970s, discovered the first binary system made
by two neutron stars (one of them being a pulsar). They found that their orbit was
decaying with a rate higher than their electromagnetic energy loss, compatible to
the prediction of a gravitational-wave emission. This discovery granted them the
Nobel prize in 1993.

In the meanwhile, to try to directly measure gravitational waves, between the
late 1950s and the 1970s, the first gravitational-wave detectors were conceived as
resonant solid-state antennas (Weber, 1960) bringing to the end of 1990s to the
first network of gravitational-wave detectors under the IGEC collaboration (Astone,
Babusci, et al., 2003). In present day, the search for gravitational waves revolves
around ground based interferometric detectors. They are designed as Michelson
interferometers with 3-4 km long arms, and, in the second decade of the 2000s,
thanks to them, the first transient gravitational-wave signal has been detected.
Thus, the gravitational-astronomy era began, precisely on September 14, 2015 when
the first ever detection has been recorded (i.e. GW150914, B. P. Abbott et al.,
2016) by the LIGO-Virgo collaboration during the first observational run O1 (Aasi
et al., 2016). The kind of observed event was a coalescence of two black holes which,
orbiting together, lost enough energy by gravitational emission to finally merge.
The signature of the event was the waveform referred to as chirp.

In 2017, during the second observational run (O2) (B. P. Abbott et al., 2020a),
two more detections represented new milestones in the gravitational-wave observa-
tions: the first signal seen by three detectors (the two of the LIGO collaboration in
the USA and Virgo in Italy), still a coalescence of two black holes (GW170814, B. P.
Abbott et al., 2017d), and the first merger of two neutron stars with an electro-
magnetic counterpart (GW170817, B. P. Abbott et al., 2017d). Hence, for the first
time, a real signal could be studied both from the electromagnetic and gravitational
point of view, giving birth to the multi-messenger astronomy.
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viii INTRODUCTION

With the third observational run (O3) (B. P. Abbott et al., 2019a, 2020b), the
LIGO and Virgo collaborations released the third catalog of gravitational-wave
detections (R. Abbott et al., 2021b), reaching 90 events and welcoming the fourth
detector of the network, i.e. the KAGRA detector, which is located in Japan. With
four operating gravitational-wave detectors we can have a very promising fourth
observational run (O4) (B. P. Abbott et al., 2019a, 2020b).

However, several other gravitational-wave sources and emission mechanisms
exist (Maggiore, 2018), which have yet to be detected due to their extremely faint
expected amplitude and/or rarity of events. Few examples are bursts from supernova
explosions, persistent signals coming from rotating neutron stars, and from a
superposition of cosmological and astronomical phenomena forming a stochastic
background of gravitational waves. Thanks to the detection of all these kinds of
signals, we could probe large portions of the universe and shed light on a variety of
phenomena in a way that has never been done before, potentially discovering also
new physics scenarios, especially in view of the next generation of gravitational-
wave detectors, such as Einstein Telescope (Michele Maggiore et al., 2020), Cosmic
Explorer (Evans et al., 2021) and LISA (Danzmann et al., 2017).

In this PhD Thesis, I will present the work on data analysis searches for
continuous gravitational waves coming from spinning neutron stars. In particular,
from population studies, we expect in our galaxy approximately an order of a
billion of unseen neutron stars (Bisnovatyi-Kogan, 1992). Hence, all-sky searches
spanning the whole sky are of crucial importance. The current PhD project aimed
at improving a few tools for this class of searches, acting on two different aspects.

First, the all-sky FrequencyHough continuous-wave search algorithm (Astone
et al., 2014) has been improved, adapting it to the parallel computing efficiency
of the modern Graphical Processing Units (GPUs), disclosing the outcomes in
La Rosa et al., 2021. Afterwards, I have deployed the new version of the algorithm
on a GPU cluster, and this optimized algorithm has been used in the LIGO-Virgo
collaboration analysis of the O3 run data R. Abbott et al., 2022a, spanning almost
one year between April 2019 and March 2020. Thanks to this work, I was able to
dramatically reduce, up to one order of magnitude, the computation time for the
all-sky search, thus giving a significant contribution to the analysis.

A further aspect has been to use and improve the stochastic gravitational-wave
background search algorithm for continuous-wave signals. The analysis pipeline
is based on the radiometer method (S W Ballmer, 2006; Mitra et al., 2008) to
search for anisotropic signal distributions over the sky, and it has been used also
to search for signals from point-like sources, such as neutron stars (B. P. Abbott
et al., 2017b, 2019c; R. Abbott et al., 2021d, 2022c). The algorithm performs very
efficiently for unmodeled analyses over a wide parameters space, but it cannot reach
the sensitivity of dedicated continuous-waves analyses. My project consisted of a
full characterization of the radiometer analysis applied to continuous waves to test
its behavior in different situations (possible interference among several signals or
with noise, isolated sources or located in binary systems, etc). Then, the adapted
GPU version of the FrequencyHough algorithm has been used to rapidly follow-up
outliers coming from the radiometer analysis, building a chain between the two
pipelines which improves the sensitivity and robustness of the search for continuous
waves using the radiometer method (scientific paper in development).
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The Thesis is organized as follows:

In chapter 1 the fundamentals of the theory of gravitational waves are summa-
rized. The linear wave equation coming from the perturbative approach and
its effects on the matter will be explained. The sources of major interest
for this work, the neutron stars, are presented together with their structure,
physical behavior and main gravitational-wave emission mechanisms. A brief
description of the gravitational-wave interferometers will be also given.

In chapter 2 we will discuss the used methods and algorithms to perform espe-
cially all-sky searches for periodic gravitational-wave signals. After a general
introduction on few main features of the gravitational-wave analysis, the
FrequencyHough pipeline will be presented in details. At last, the porting on
GPU of the algorithm will be shown with the main achieved outcomes.

In chapter 3 the use of the radiometer stochastic background algorithm for a fast
identification of continuous-wave sources will be presented. After a detailed
explanation on the search for stochastic gravitational-wave background, it will
be explained how the analysis algorithms have been used for continuous-wave
searches. It will follow the description of the in-depth characterization study
and the developed follow-up procedure using the continuous-wave tools.





Chapter 1

Sources of gravitational waves

Gravitational-waves are space-time perturbations generated by non-stationary
gravitational fields (Einstein, 1918). In general, the propagating field equation is
difficult to solve, mainly due by the non-linearity of the gravitational field (Ferrari
et al., 2020), but assuming that it can be considered as a small perturbation, an
approximate solution can be derived as the equation of a wave traveling at the
speed of light.

As we will see, unlike electromagnetic waves which come from dipolar oscillations,
gravitational waves have a quadrupolar nature and the quadrupole oscillation of
the sources are strictly related to their rotational asymmetry. Notably, the sources
that are of major interest for this work are non-axisymmetric rotating neutron stars.
Modeling them as ellipsoids rotating around one of their axis, the gravitational-
wave emission from them is a continuous signal, with amplitude depending on their
ellipticity, other than their moment of inertia (Ferrari et al., 2020). The ellipticity
and the moment of inertia (that is, radius and mass) are in turn closely related
to the internal structure of neutron stars. Hence, the detection of this class of
gravitational-wave signal would reveal a lot of information about the physics of
neutron stars.

In this chapter, after reviewing the basics of the General Relativity theory, the
physics of the neutron stars will be described. The main gravitational-wave emission
mechanisms will then be discussed, with a particular accent on non-axisymmetric
rotating neutron stars. Other emission mechanisms will be summarized as well as
other classes of sources of particular interest. The chapter will end with an overview
of the basic principles of the interferometric detectors and their main noise sources.

1.1 The theory of gravitational waves

In the framework of General Relativity, the gravitational field is described as
the metric tensor of a curved space-time geometry, usually referred to as gµν , where
µ, f = 0, 1, 2, 3 indicate respectively the time and the three spatial dimensions. In
absence of a gravitational field, the space-time is described by the flat Minkowski
metric ηµν = diag(−1, 1, 1, 1).

To derive the equation of the propagating wave, a perturbation method is used
to solve the Einstein’s equations, where the gravitational field is considered a small

1



2 CHAPTER 1. SOURCES OF GRAVITATIONAL WAVES

perturbation hµν of the flat metric: gµν = hµν + ηµν (Ferrari et al., 2020).

1.1.1 Geodesic equations and the curvature tensor

In order to describe how a gravitational field acts on the motion of a particle,
as seen by a frame different than the locally inertial one (i.e., the frame where the
distance is always defined by the Minkowski metric, which can be always defined as
states the equivalence principle), we need the equations of motion. In the locally
inertial frame, the distance is defined as ds2 = ηµνdx

µdxν1. Holding the flat metrics
and hence the Newtonian mechanics, the equations of motion of a particle will be
d2xµ/dτ 2 = 0, where τ is the particle proper time.

Moving to another frame means that the coordinates xµ will be expressed by a
transformation xµ = xµ(xµ). Applying this transformation in the distance definition,
and developing the calculations following the normal rules for differentials and
derivatives, we will have the new distance (Ferrari et al., 2020)

ds2 = ηαβ
∂xα

∂xµ
dxµ

∂xβ

∂xν
dxν = gµνdx

µdxν , (1.1)

where the definition of the new metric tensor is then

gµν =
∂xα

∂xµ
∂xβ

∂xν
ηαβ. (1.2)

Following the same process for the equations of motion, we obtain the so-called
geodesic equations, which describe the motion of a particle as seen by a generic
frame:

d2xα

dτ 2
+ Γαµν

dxµ

dτ

dxν

dτ
= 0. (1.3)

The solutions xµ(τ) of these equations are the geodesics, i.e. trajectories in
space-time. The key element in these equations is the second term on the left
side, proportional to the elements Γαµν . They are called affine connections and
contain the information of the space-time manifold curved by the gravitational field,
describing how the geometry changes in a generic frame. It can be shown that Γαµν
has an explicit dependence on the metric tensor gµν in the formula

Γαµν =
gσα

2
(∂νgσµ + ∂µgνσ − ∂σgµν) , (1.4)

and it contains only the first derivatives of the metric tensors. This is not enough
to express in the most general way the information on the gravitational field. In
fact, because of the equivalence principle, we can always define a locally inertial
frame, where gµν → ηµν and Γαµν = 0, not allowing to describe anymore the effect
of the curved metric.

The tensor that mathematically describes in any reference frame the intrinsic
curvature of a manifold given by a gravitational field is the curvature tensor, also
called Riemann Tensor, defined as:

1Here x stands for the coordinates in the locally inertial frames, in order to distinguish them
from the generic ones.
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Rα
βµν := ∂µΓαβν − ∂νΓαβµ − ΓασνΓ

σ
βµ + ΓασµΓσβν . (1.5)

This tensor has several important properties, among which the most important
is that, in a locally inertial frame it becomes

Rα
βµν =

1

2
gασ (∂β∂µgσν − ∂β∂νgσµ + ∂σ∂νgβµ − ∂σ∂µgβν) . (1.6)

This means that even though the affine connections are 0 in the locally inertial
frames, their derivatives are not, causing that the Riemann tensor gives information
about the gravitational field even in this case, through the second derivatives of
the curved metric2 .

Usually, aside the Riemann tensor Rµ
ναβ, its contraction Rµν := Rα

ναβ, called
Ricci tensor, and the scalar R = gµνRµν , are used to write the Einstein field
equations (Ferrari et al., 2020).

1.1.2 The Einstein’s equations and their perturbative solu-
tions

Unlike the electromagnetic field, the gravitational field is not linear. For example,
an electromagnetic wave comes from oscillations of charged particles, but the carried
four-momentum cannot be itself the source of the field. For the gravitational field,
because the mass-energy relation in the Theory of General Relativity, both a mass
distribution and an energy density can be sources of a gravitational field. This
implies that the energy carried by gravitational waves has to appear as well in the
field equations as a source. Hence, they cannot be linear.

While for the Newtonian gravitational field we can use the mass density ρ in
the field equation ∂igi = −4πGρ, for a relativistic approach we need to use the
stress-energy tensor Tµν to describe an arbitrary energy-matter distribution, in an
equation that has to reduce to the Newtonian case when gµν → ηµν . Then, the
equation will have the following shape:

Gµν =
8πG

c4
Tµν , (1.7)

where G is the gravitation constant and c the speed of light in vacuum.
The tensor Gµν is the Einstein tensor, defined as

Gµν = Rµν −
gµν
2
R.3 (1.8)

The Einstein’s equations can also be written in terms of the Ricci tensor:

Rµν =
8πG

c4

(
Tµν −

gµν
2
T
)
, (1.9)

2It can be useful to remark that in a flat space-time , Rµναβ = 0 in any reference frame.
3In general, Gµν = Rµν − gµν

2 R + λgµν , with the additional term proportional to the so called
cosmological constant λ ≈ 1.11 × 10−52m−2. Being λ very small, it can be neglected since it
does not play a role if not in cosmological scales, which are not treated in this thesis focused on
astrophysical phenomena.
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where the scalar T = T ρρ is the trace of Tµν 4

The Einstein’s equations have the property to be gauge invariant, i.e. symmetric
for an arbitrary coordinate transformation xµ′ = xµ

′
(xµ).

Now let us consider a (constant) exact solution of Einstein’s equations gµν ,
and let us assume that, at least in a certain reference frame, it exists a small
perturbation hµν of the background metric. If, for instance, we choose gµν = ηµν ,
then we have that the total spacetime metric will be a small perturbation of the
flat metric: gµν = ηµν + hµν . We can define Einstein’s equations for this metric and
study the propagation of it as a wave with the perturbative approach.

Within this assumption, the stress-energy tensor and the Ricci tensor will be
the sum of the unperturbed and the perturbed contributions. Neglecting terms
of the order h2 and above: Tµν = T

(η)
µν + T

(h)
µν , Rµν(g) = Rµν(η) + Rµν(h). If we

explicit the affine connections, since Γαµν
(
gµν = ηµν

)
= 0, we obtain

Γαµν(g) = Γαµν(η) + Γαµν(h) +O(h2) =

= Γαµν(h) +O(h2) =

=
1

2
ηασ(∂µhσν + ∂νhσµ − ∂σhµν) +O(h2).

(1.10)

In this case, the Einstein’s equations will be

Rµν(g) = Rµν(h) =
8πG

c4

(
T (h)
µν −

ηµν
2
T (h)

)
. (1.11)

Note that already in this form the equations are linear, but we can show it in
a more evident way if we explicit the Ricci tensor using the affine connections in
Eq. 1.10:

Rµν(h) = ∂αΓαµν − ∂νΓαµα =

= −1

2

[
�flathµν −

(
∂λ∂µh

λ
ν + ∂λ∂νh

λ
µ − ∂µ∂νhλλ

)]
,

(1.12)

where �flathµν = ηµν∂µ∂ν is the D’Alambertian in flat spacetime. If we equalize
the second members of Eq.s 1.11 and 1.12, we have

− 1

2

[
�flathµν −

(
∂λ∂µh

λ
ν + ∂ν∂λh

λ
µ − ∂µ∂νhλλ

)]
=

8πG

c4

(
T (h)
µν −

ηµν
2
T (h)

)
. (1.13)

We know that, because of the Gauge symmetry, the solutions of these equations
are not uniquely determined. If we choose a coordinate system where the so-called
harmonic gauge condition is satisfied, that is gµνΓσµν = 0, Eq. 1.13 can be simplified:
it can be shown that in the weak field limit the harmonic gauge is equivalent to the
relation ∂µhµν = ∂νh

µ
µ/2, and the second term on the left side of Eq. 1.13 will be

equal to 0 (to hereafter T = T (h)), i.e.:

�flathµν = −16πG

c4
(Tµν −

ηµν
2
T λλ ). (1.14)

4Note that in vacuum Tµν = 0⇒ Rµν = 0, and while Ricci tensor vanishes in vacuum, Riemann
tensor does not, unless the gravitational field is null, or constant and uniform.
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Keeping in mind equations 1.7 and 1.8, and defining the tensor h̃µν := hµν −
ηµνh

λ
λ, we can write the two conditions as{

�flath̃µν = −16πG
c4
Tµν

∂µh̃
µ
ν = 0

. (1.15)

Since in the vacuum we have Tµν = 0, then �flath̃µν = 0.
We will refer to this relations as wave equation, because it is very similar to the

one describing an electromagnetic wave in the vacuum, so as a propagation of a linear
superposition of plane waves. Their simplest solution will be a monochromatic plane
wave h̃µν = <[Aµνe

ikµxµ ], where Aµν is the polarization tensor and k = (ω/c,k) the
wave vector.

If we replace this solution in the harmonic gauge condition, we will obtain
kµA

µ
ν = 0, which means that the wave vector and the polarization tensors are

orthogonal and the wave is transverse. If we instead replace it in the wave equation,
it will result kµkµ = 0 ⇒ ω ≡ ck0 = c

√
kiki, which means that the gravitational

waves travel at the speed of light.
The harmonic gauge condition is not enough to determine the gauge uniquely,

since it can be shown that from the 10 degrees of freedom of the (symmetric) metric
tensor hµν , it fixes only 4 of them, leaving 6 components still free. It can be shown
that imposing the transverse-traceless gauge (TT-gauge) choice, where we have
h0µ = hii = ∂jhij = 0, the degrees of freedom are collapsed to only two, which
are the polarization states of the gravitational waves. The metric tensor in the
TT-gauge, which is usually referred to as, hTTµν will then look like:

hTTµν =


0 0 0 0
0 0 0 0
0 0 h+ h×
0 0 h× −h+

 , (1.16)

or, separating the two polarization states:

hTTµν = <[A+
µνe

ikx + A×µνe
ikx], (1.17)

with the two polarization tensors defined up to amplitude constants:

A+
µν ∝


0 0 0 0
0 0 0 0
0 0 +1 0
0 0 0 −1

 , A×µν ∝


0 0 0 0
0 0 0 0
0 0 0 +1
0 0 +1 0

 . (1.18)

The reason of the + and × symbols used to label the two gravitational-wave
polarization states can be explained by studying the effect of a metric perturbation
on the geodesics, i.e., on the motion of particles. To do that we will study the
effect of the relative motion of two particles. To understand what happens when a
gravitational-waves signal passes between them, we have to define the concept of
geodesic deviation.

Let us consider two particles moving freely in a gravitational field, respectively
along the geodesics xµ(τ) and xµ(τ)+δxµ(τ). If we define a set of geodesics xµ(τ, p),
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with p a dimension that distinguishes the different geodesics of the set, we can write
the separation between two geodesics as δxµ = ∂xµ/∂p. The vector tangent to the
geodesic is uµ = ∂xµ/∂τ , it follows that ∂uµ/∂p = ∂δxµ/∂τ .

Another key element is the definition of the covariant derivatives. Since the
derivative in general is not invariant for a coordinate transformation5, it is necessary
to define a derivative of a four-vector V µ which does not change in any reference
frame. These are the covariant derivatives and they are defined as

DνV
µ := ∂νV

µ + V σΓµσν . (1.19)

With these definitions, it is possible now to define the second covariant derivatives
of the separation vector δxµ along a fixed geodesic (i.e. p = const), called also
geodesic deviation,

D2

Dτ 2
δxα = Rα

βµνu
βuµδxν , (1.20)

which describes the relative acceleration of nearby particles moving along close
geodesics according to the curvature tensor.

Applying the geodesic deviation to nearby particles, and computing the results
for a small perturbation, we have

δxj

(
t− x

c

)
= δxjt=0 +

1

2
ηjihTTik

(
t− x

c

)
δxkt=0. (1.21)

Given the transverse nature of the gravitational waves, with a wave moving
along the x axis, we will have δx1 = const. The two other components, following
equation from 1.16 to 1.17, will be{

∆δx2 = (h+δx
2

+ h×δx
3
)

∆δx3 = (−h+δx
3

+ h×δx
2
),

(1.22)

where, assuming that the amplitudes A are real functions, the two polarization
states can be written as

h(+
×)

= 2<
[
A(+
×)
eiω(t−xc )

]
= 2A(+

×)
· cos

[
ω
(
t− x

c

)]
(1.23)

This is the periodic oscillation generated by a gravitational wave. If we imagine
a ring in the vacuum and a linearly polarized plane wave, crossing perpendicularly
the plane of the ring, it will cause a periodic distortion of the metric itself. The
effect will be an orthogonal compression and dilation of the ring to an ellipse, with
major semiaxes along the coordinate axis or rotated by 45 degrees, depending on
wether the linear polarization is respectively + or ×, explaining the reason of their
names (see Fig. 1.1).

5In a curved manifold, the derivative of the basis vectors e(µ) is not in general zero, since
∂βe(µ) = Γµαβe(µ). Inverting the point of view, this means that the affine connections express
how the basis vectors change when the coordinates are transformed
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Figure 1.1: The effect of linearly polarized TT-gauge gravitational waves, crossing a
ring of particles in vacuum along the x direction. Figure from Le Tiec et al., 2017.

1.2 Compact objects

For astrophysical phenomena, in order to have relativistic effects strong enough
to produce detectable gravitational waves, it is necessary to have objects extremelly
compact. These objects come from the ending stage of the stars evolution, whose
outcome is related to the progenitor mass: from stars with M . 8M� we expect to
obtain white dwarfs, while neutron stars likely had progenitors with mass between
8M� and 25 - 60M� (Shapiro et al., 2008), while above the latter range the only
possible result is a black hole.

White dwarfs are star cores which remain exposed for various reasons, usually
either because they lose the outer layers dragged away by a companion object,
either because the radiation pressure exceeds the gravitational self-attraction leaving
around a planetary nebula (Carroll et al., 2017). Their radius is approximately the
Earth radius and their mass is comparable to the Sun mass M� ≈ 1.99× 1030kg.
Given their high density, since the white dwarfs do not have anymore thermonuclear
processes which can hold the pressure of the gravity of their mass, they remain
stable because of the degenerate condition of their electrons.

Neutron stars come from a core collapse supernova where the energies and
densities bring to a neutron synthesis not balanced anymore by their β decay. They
are made then for the vast majority by neutrons, having a mass in the range '1 -
1.4M� and a radius of '10 - 14 km, and their equilibrium is driven by equations of
state which in first approximation involve the degeneracy of neutrons.

In both cases there is a mass limit that breaks the equilibrium between gravity
and fermion degeneracy, with a collapse of the star. As we will see in Sect. 1.2.2, in
certain conditions the equilibrium of the degenerate matter is not able to find a
stable configuration. This can happen when the core collapse of the parent star
triggers, or because mass accretion, or during the collision of two compact massive
objects. The result will be a collapse into a black hole, and a key parameter for
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this behavior is the mass: as we will see in Sect. 1.2.2, the problem of the mass
limit for compact objects is crucial for the study of their physics.

A black hole is a relativistic singularity theorized by the General Relativity,
which is formed when an object reaches a density such that nothing can resist to
the gravitational pressure and all its matter collapses in a material point. Following
General Relativity, the physics of black-holes is fully described by a metric which
includes as parameters only their mass, angular momentum and eventually electric
charge, although the last quantity is usually assumed null. Their size is defined by
the radius at which the escape velocity reaches the speed of light in the vacuum,
the so-called Schwarzschild radius (Ferrari et al., 2020; Hartle, 2003):

Rs = 2
GM

c2
, (1.24)

where G is the gravitational constant, M the mass of the object and c the speed of
light in vacuum.

Gravitational waves coming from neutron stars are the main topic of this thesis
and their emission mechanisms will be presented in Sec. 1.3.2.

Currently gravitational waves from white dwarfs cannot be detected from ground
based detectors but white dwarfs binary systems produce a foreground that will be
detected by future space interferometer LISA, limiting its sensitivity (Danzmann
et al., 2017). In any case, even though we are not treating the physics of white
dwarfs in this work, the concept of fermion degeneracy used to describe them plays
a key role also in the existence of neutron stars, and this is why they have been
mentioned.

1.2.1 Degenerate fermions

A property of all fermions (hence of electrons in white dwarfs and neutrons in
neutron stars) is that the total wave function of a system of particles is antisymmetric,
meaning that it changes sign for the exchange of two particles. This translates into
the Pauli exclusion principle, that states that two or more fermions cannot occupy
the same quantum state: if we had two fermions with the same state, e.g. the same
atomic orbital and same spin, swapping them would not change the total wave
function violating the antisymmetric condition.

When the temperature of a gas of fermions of the same kind is very low,
ultimately T = 0 K, the particles will occupy the lowest possible energy state,
stacking up to higher energy when they will find a state already occupied, up to an
energy (Carroll et al., 2017; Shapiro et al., 2008)

εF =
~

2mf

(
3π2nν

) 2
3 , (1.25)

where mν and nν are respectively the mass of the fermions we are considering and
their number per unit volume, ~ ≈ 1.055 × 10−34 m2 kg/s is the reduced Planck
constant. The quantity defined by Eq. 1.25 is referred to as Fermi energy, and
the system we are considering is a Fermi-Dirac condensate, or a gas of degenerate
fermions. In this condition, the pressure given by the momentum of the degenerate
fermions can be enough to counterbalance the self gravity of the compact star.
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It is important to remark that in real situations T > 0 K, hence not all the
fermions will be in a degenerate state: some fermions will have thermal states with
an energy εT > εF .

Nevertheless, writing down the thermal energy as εT = 3
2

kT, with k ≈ 1.38×
10−23 m2 kg s−2 K−1 the Boltzmann constant, we can define a condition for the gas
of fermions to be still degenerate even with T > 0 K.

If we impose that the thermal energy has to be lower than the Fermi one, i.e.
εT < εF for a given T , replacing the expressions of the two energies in the latter
relation we will have

3kT < ~
(
3π2nν

) 2
3 /mf , (1.26)

which shows that even at T > 0 the degeneracy condition can be satisfied, depending
on the mass and density of the fermions considered.

Using the definition of the Fermi momentum pF (Carroll et al., 2017; Shapiro
et al., 2008),

εF =
(
p2
F c

2 +m2
νc

4
) 1

2 (1.27)

we can express the number density nν of degenerate fermions, assuming an isotropic
distribution of states in the momentum space of free particles (Carroll et al., 2017;
Shapiro et al., 2008):

nν =

∫ pF

0

p2

π2~3
=

p3
F

3π2~3
. (1.28)

From the kinetic theory, the pressure will be

Pν =

∫ pν

0

p2c2

ε
nνdp. (1.29)

Replacing equations 1.27 and 1.28 in 1.29, the integral can be simplified using
the non-relativistic limit (E ≈ mc2 + p2/2m), yielding to the relation

Pν =
1

5

(
3π2
)2/3

(
~
mν

)
n5/3
ν . (1.30)

Using the ultra-relativistic limit (E ≈ pc) we obtain:

Pν =
1

4

(
3π2
)1/3

(~c)n4/3
ν . (1.31)

These are the equations of state for a gas of completely degenerate fermions,
in the non-relativistic and ultra-relativistic limit. They can be both written in
the shape of a polytropic relation P = Kργ, where γ depends on the model used
to define the pressure-density relation of the system (Hartle, 2003; Steiner et al.,
2010). A larger γ implies that the pressure increases more for a given increase of
the energy density, and hence the equation of state is stiffer.

1.2.2 Hydrostatic equilibrium and mass limit

Another key element of a gas of free degenerate fermions is that there is a
non-trivial relationship between mass and volume of a compact object in a general-
relativistic treatment. To understand the structure and composition of a compact
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Figure 1.2: Schematic plots from Shapiro et al., 2008 showing the equilibrium configura-
tion of a gas of degenerate fermions for a given equation of state, as plots of mass M/M�
in function of central density ρc and star radius R. The turning points of stable-unstable
intervals are shown with letters from A to E and the stable intervals for white dwarfs and
neutron stars are specified.

star, the study of its hydrostatic equilibrium is the fundamental starting point, and
a fully relativistic treatment is necessary for dense objects like neutron stars.

Let us consider a non-rotating spherically symmetric star of mass M . The so
called Tolman-Oppenheimer-Volkoff (TOV) equation for the hydrostatic equilibrium
(Oppenheimer et al., 1939; Tolman, 1939), solution of the Einstein’s equation for a
perfect fluid with spherical distribution, is:

dP

dr
= −G

r2

(
ρ(r) +

P (r)

c2

)(
m(r) + 4πr3P (r)

c2

)(
1− 2G

m(r)

rc2

)−1

, (1.32)

where r is the distance from the center and P , ρ and m are respectively the pressure,
the density and the mass as functions of r.

Eq. 1.32 can be integrated with the following boundary conditions:

• m(r = 0) = 0 and ρ(r = 0) = ρc, with the latter being the free parameter
central density;

• m(r = R) = M and ρ(r = R) = 0, where M and R are respectively the star
total mass and radius, which means that at the surface no source of pressure
is left and all the mass of the star is therein included.

If ρc varies, we can have the family of all degenerate matter stars, which are in
equilibrium for a given equation of state (Hartle, 2003; Shapiro et al., 2008).

Among all possible configurations, only a portion of them is stable. Working
similarly to a configuration in energetic equilibrium, an unstable hydrostatic equilib-
rium will fall dynamically to a stable one at the first perturbation. The analysis of
the stable configuration goes through the analysis of the stability of normal modes
of vibration of the star. If for a given equation of state and central density ρc, there
is at least one normal mode that grows indefinitely, then the star is unstable and it
will break up or fall in a stable configuration (Hartle, 2003; Shapiro et al., 2008).

Fig. 1.2 shows the relationship of the star mass M versus ρc, and M versus the
star radius R, for a fixed equation of state in a schematic way from Shapiro et al.,
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2008. The points labeled from A to E highlight the starting and ending points of
unstable configurations. The range where white dwarfs and neutron stars can exist
in a stable configuration are shown as well.

It is important to remind that, in any general relativistic treatment, there
is always a mass limit for a compact star above which it falls into a singularity.
Even though, especially for neutron stars, this mass limit depends strongly on the
equation of state and rotation rates, there are two general limits which strictly
bound the maximum mass they can sustain (Kalogera et al., 1996; Rhoades Jr et al.,
1974). The first comes straightforwardly from the Schwarzschild radius: any object
with mass M smaller than its Rs ≤ 2GM/c2 cannot exist. The second comes from
considerations about causality: the sound speed c2

s = dP/dρ inside the star has to
be less than the light speed, which implies R . 3GM/c2 (Lattimer, 2012; Lattimer
and Prakash, 2004). From these considerations, a general limit for the maximum
mass a neutron star can achieve is M ∼ 3M�.

As we have seen, the study of the condition of hydrostatic equilibrium of a
compact star is very closely bound to the definition of its equation of state, that
is the relationship between pressure and energy-mass density distribution (i.e.,
its gravitational attraction). While for white dwarfs the equation of state is well
described by a gas of free degenerate electrons in a lattice of ionized atoms, with γ
varying from 5/3 to 4/3 as the density increases (and hence the electron kinetic
energy), for neutron stars the physics becomes much more complex both from the
point of view of gravitation and particle physics.

While for white dwarfs a non-general relativistic treatment of the equation of
state of a gas of degenerate electrons for the whole volume can be sufficient, for
neutron stars the density reaches a level high enough to dramatically change the
nature of the matter composing it. Usually, the integration of the TOV equation
is split in several layers, with different fixed values of ρ and different equations of
state that describe separately the matter in every layer. While the outer layers
are well described by equations of state of perfect gas of degenerate fermions, in
the inner layers, representing the vast majority of the mass of the star, the high
density forces the matter to interact in a non trivial way (e.g nucleon-nucleon,
meson-nucleon and QCD interactions, Lattimer and Prakash, 2004; Shapiro et al.,
2008), giving significant contribution to the pressure-density relation, and hence
bringing to several models of equation of state.

1.2.3 Neutron stars

As already stated, neutron stars are compact objects of mass around 1.5M�,
radius of the order of '10 km and a density that at their center can reach values
ρc & 10× ρn, with ρn the typical nuclear equilibrium density of ' 2.8× 1014 g/cm3

(corresponding to a nucleon density nn ' 1.6× 1038cm−3) (Lattimer and Prakash,
2004; Shapiro et al., 2008). They are mainly composed by neutrons, but their
structure is more complex and a complete physical description needs different layers
with increasing density, different matter compositions and hence different equations
of state.

Neutron stars are formed by the core-collapse supernova of a & 8M� star in the
latest stage of its life. The detailed mechanism of a supernova explosion, and then
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the formation of a neutron star rather than a black hole are outside the purpose
of this work, but key elements are the trigger of the collapse, due by the fact that
the star core reached its mass limit and the role of neutrinos in driving away the
gravitational energy loss by the collapse, giving a significant contribution to the
explosive shockwave.

The collapse is triggered when the iron inner core of the progenitor reaches
the Chandresekhar limit. Because thermonuclear processes in the outer layers,
structured as an onion-like structure made by elements progressively lighter (Bur-
rows, 2000; Maggiore, 2018), the inner core steadily accretes mass (Burrows, 2000).
Since no esothermic nuclear fusion reactions can happen for the iron nuclei, the
only pressure holding the matter of the inner core against its self-gravity is the
degeneracy energy of the electrons. When the iron core reaches Mch, no equilibrium
configurations can exist and the collapse is triggered (Burrows, 2000; Lattimer and
Prakash, 2004; Shapiro et al., 2008).

When the core collapses to densities of ∼107 g cm−3(Carroll et al., 2017) the
electrons become ultra-relativistic (Lattimer and Prakash, 2004) and, in the nuclei
of the star core, the electron capture process is triggered p+ + e− → n+ νe.

This phenomenon causes a neutron enrichment of the proto-neutron star and is
the main source of neutrinos that will trigger the supernova explosion, eventually
leaving then the star to its equilibrium configuration, where most of the matter is
composed by free neutrons in a degeneracy state.

In this configuration they are stable and do not decay via a β decay (n →
p+ + e− + νe), because they are already in their minimum energy state allowed.
Since the internal temperature is ∼109 K, thermally excited particles can still go
through subsequent beta decays of non-degenerate neutrons and electron-proton
combinations, eventually with the participation of another nucleon (the so-called
URCA process, Lattimer and Prakash, 2004; Shapiro et al., 2008). After ∼105 s
the neutrino emission will be negligible and the neutron star will cool with a steady
decreasing rate with emission of X photons (Lattimer and Prakash, 2004).

Two important features of neutron stars come from the fact that in the collapse
of the parent star core, the angular momentum and magnetic field flux are expected
to be conserved. This implies:

• a high rotation period of 1 - 10 s (reaching 10−3 s for objects that acquired
angular momentum via mass accretion)

• magnetic fields of ∼1012 G up to ∼1015 G

The very high magnetic field is responsible for periodic electromagnetic pulsations
from most of the known neutron stars, which are then referred to as pulsars. This
emission has been modeled as due to their magnetic fields, which — together with
their rotation — let them act like beacons. The known pulsars are very interesting
potential gravitational-waves sources (R. Abbott et al., 2021c).

It is expected that both in the early stage of their formation and later, various
emission mechanisms will produce gravitational waves. A discussion is given in Sec.
1.3.2.



1.2. COMPACT OBJECTS 13

Structure and characteristics

On the basis of what is explained in Sec. 1.2.2, the description of the structure
of neutron stars comes from the solution of its stable hydrostatic equilibrium
configuration, with given equations of state that express the models of the matter
constituting the object.

As we have seen, the central density plays an important role to define which
neutron stars can be stable. At the same time, a fundamental hypothesis for any
stable configuration is that the density is a function of the distance from the center,
decreasing until it becomes 0 at the star surface. Two density values are very
important to describe the neutron star composition, which are the neutron drip
density ρdrip = 3× 1014 kg m−3 and the nuclear density ρnucl = 2.3× 1017 kg m−3,
which represent strong variations of the physical behavior of the matter inside the
star. Because of that, neutron stars are described by concentric shells at various
radii, where different equations of state describe the different physics (Lattimer and
Prakash, 2004; Shapiro et al., 2008):

• A tiny atmosphere and envelope whose primary role is to determine the release
of photons and thermal emission from the inner layers, with a negligible mass
and a crust 1 - 2 km thick with density from 106 g cm−3 to ρnucl. From the
outer layer of the crust to ρdrip, the crust is made mainly by neutron rich
nuclei starting from 56Fe in the outer layers, to atoms having a number of
neuclons A ' 200, made by 80 - 90% of neutrons in the inner part. This layer
is made by a lattice of nuclei embedded in the electron degenerate gas. In
this configuration, the neutrons in the nuclei do not decay because all the
energy slots that a produced electron would occupy are already filled by the
degenerate gas. When the neutron drip is reached, more and more neutrons
will leak out of the nuclei lattice, overtaking the role of the electrons to
determine the pressure of the system. They create a superfluid that interacts
with the rest of the crust, and may generate rearrangements which contribute
to change the moment of inertia of the star, causing a sudden increase of the
rotational speed, the so-called glitch. Approaching the edge with the core,
the nuclei are dissolved in the fluid of neutrons.

• The core represents '99% of the mass of the star and is usually described
by an outer region made by nucleons, where the neutrons form a superfluid
and protons a superconductor, plus electrons and muons, and an inner region
composed probably by either strange-rich matter, condensate of π and K
mesons, deconfined matter or other quantum chromodynamics modeling,
where the strong interaction plays by far the dominant role at densities up to
∼10 times that of typical atomic nuclei.

Representing almost all the mass of the star, the core determines the gravitational
behavior of neutron stars and it is where the model of the equation of state becomes
crucial. It is evident that the uncertainty in the description of matter at such high
density in the neutron star’s core is very significant.

Observations during the recent years have tried to reduce the space where
equations of state can span, with an important role played by the detection of
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the neutron star binary coalescence GW170817 (B. P. Abbott et al., 2017d, 2018).
Following recent reviews (Lattimer, 2012, 2021), (Al-Mamun et al., 2021; Steiner et
al., 2010), more and better estimations of masses and radii for several neutron stars
are available from new detectors like the NICER X-ray telescope, in combination
also with on-Earth nuclear experiments and the analysis of GW170817, which
helped to constrain the space of models and key parameters such as maximum and
minimum masses. An interesting example is a method developed in Steiner et al.,
2010, based on a Bayesian analysis matching the available data on a parametrization
of possible neutron star equation of states, modeling the external shells with known
degenerate matter physics, up to density ∼ρnucl, and using two different polytropes
to describe the core equation of state.

An example of the results of this kind of analysis is summarized in Fig. 1.3, where
M -R relations coming from a set of different equation of states are compared to the
estimation from Steiner et al., 2010. In the study of neutron star equation of states,
in fact, it is useful to look at the M -R modeled curves produced by the modeled
equation of states (Lattimer, 2012). In the left plot of Fig. 1.3 several curves are
shown from four families of equation of states (Lattimer, 2012): purely strange
quark matter neutron stars; hadronic matter with exotic physics (like condensate of
K or π mesons, hyperons, quark deconfinement) that which, cannot reaching 2M�,
are not able to describe the most massive observed neutron stars as observed they
do not reach the value of 2M� (Lattimer and Prakash, 2004); two other families of
more standard hadronic matter neutron stars, one stiffer and one softer, showing
that the radius is weakly dependent on the mass in the range between '0.5 - 1.5M�
(Lattimer, 2012; Lattimer and Prakash, 2004). An interesting result from Steiner
et al., 2010 is that the family of equation of states with the mass degeneracy at
R ' 12 km is favoured by the available data available.
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Figure 1.3: Plots showing recent results on equation of state models. Left plot: adapted
from Lattimer, 2012, the M -R relations of several equations of state divided in four
families: pure quark matter (green), soft equation of states with exotic matter models
(dashed blue), hadronic equation of states with a mass distribution degeneracy at '12 km
(red), softer hadronic equation of states with asymptotic behavior at higher radii (dashed
red). Right plot: the results of the mentioned Bayesian analysis from Steiner et al., 2010
(image from Lattimer, 2012) as M -R posterior distribution, showing that the family of
equation of states showing the vertical behavior at '12 km is favored with respect to the
others with the data available so far.
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Figure 1.4: Scheme of the pulsar emission due to the misaligned rotating magnetic field.
Figure from Carroll et al., 2017.

Pulsars

Pulsars are neutron stars that emit electromagnetic pulsations, characterized by
their strong magnetic field and fast rotation.

As previously stated, the emission mechanism of a pulsar is essentially explain-
able as a beacon of radio photons powered by the rotation of the magnetic field
misaligned with respect to the rotation axis. The rapidly varying dipole field
produces an induced electric field strong enough to drag charged particles from the
surface of the star. The particles will follow the magnetic field lines producing a
magnetosphere around the pulsar, co-rotating with it. At the distance Rc = c/ωrot,
where ωrot is the rotation pulsation of the pulsar, the speed of the particles will
reach c and the field lines are open (Carroll et al., 2017); within this radius, defined
as light cylinder, they are instead closed.

The electrons accelerated by the magnetic field travel along the curved field
lines, spiraling around them and emitting gamma photons through Bremsstrahlung
process, roughly parallel to their instantaneous motion direction. The emitted
photons are energetic enough to decay in e+ - e− pairs, which in turn are accelerated,
triggering a cascade process which ultimately results in the narrow beacon of radio
emission along the magnetic axis of the star (see Fig. 1.4).

It has been observed that the pulsars timing and pulsation profiles are generally
very stable (excluding glitches and other transient phenomena). Their dynamics is
strongly characterized by the rotation period P and, because of the steady loss of
energy due to their pulsations, by the spindown rate Ṗ . Hence, it is convenient to
describe the population of known pulsars with P -Ṗ plots, as shown in Fig. 1.5.

Pulsars usually emit in the radio band, with periods around 0.1-100 seconds and
magnetic fields around 1010 - 1012 G. Few other groups with different characteristic
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Figure 1.5: P -Ṗ diagram for various classes of pulsar. Magnetars are shown in red
squares, rotating radio transient (RRAT, pulsars which show unstable emission) in blue
stars, X-ray dim isolated neutron stars (XDIN, characterized by their thermal X-ray
emission) in green triangles. Expected magnetic field B and age in function of P and Ṗ
are also indicated. The green line is the so-called death line, threshold below which the
particles dragged by the magnetic field are no longer energetic enough to produce the
cascade pair production effect and the pulsar stops its emission (Steiner, 2020).

exist, especially for pulsars in binaries with mass accretion: the transfer of mass
from the companion star provides additional angular momentum that accelerates the
rotation up to periods of P ∼ 10−3 s. The in-falling particles, losing gravitational
energy in the process, are much more energetic and produce X-ray emission instead
of radio (Nagase, 1989). Millisecond radio pulsars can be found isolated if their
original system has been disrupted (Bailes et al., 1997; Lyne et al., 1987).

Another class of pulsars, the magnetars (Mereghetti, 2008), have an emission
rate that, for the observed rotational periods, can be explained with a magnetic
field of various orders of magnitude higher than standard pulsars, up to ∼1016

G (see Fig. 1.5). . The high magnetic field makes these sources peculiar, with a
persistent X-ray emission and a series of repeated gamma-ray bursts, as well as
sudden giant flares in the gamma-ray band.
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1.3 Sources of gravitational waves
Now that the relativistic explanation of the gravitational waves is given and

having introduced the physical behavior of the sources of major interest for this
work, we can clarify how the gravitational waves from them are generated.

Although many classes of sources exist, most of the astrophysical ones can be
explained as an oscillation of the quadrupole moment of the system, for example
an inspiraling binary system made by two compact objects which eventually ends
in a coalescence, or the rotation of a non-axisymmetric neutron star, either isolated
or in a binary system. The possibility to detect a gravitational-wave stochastic
background of cosmological nature will be discussed as well in Sec. 1.3.3.

1.3.1 Quadrupole formalism

The quadrupole formalism is a very useful approach to compute waveforms
emitted by a wide variety of gravitational-waves sources. Let us consider Eq. 1.15
and assume that the systems we are considering do not vary too fast, i.e., the space
extension of the source is much smaller than the emitted wavelength, i.e., given
a length ε, the emitted wavelength is λG = 2πc/ωG � ε. This implies that the
stress-energy tensor Tµν is non-zero in a region with spatial coordinates |xi| < ε,
and we are considering processes with typical velocities εωG � c. This is called
slow-motion approximation.

Defining the Fourier transform of a function f(t,x) as

f(ω,x) =

∫ +∞

−∞
f(t,x)eiωtdt,

Eq. 1.15, in the frequency domain, can be written as follows (Ferrari et al., 2020):(
∇2 +

ω2

c2

)
hµν(ω,x) = −16πG

c4
Tµν(ω,x), (1.33)

where ∇ := {∂1, ∂2, ∂3} is the vectorial nabla operator whose components are the
partial derivatives on the three spatial coordinates.

To find the gravitational-wave power emitted by a generic source, we have to
solve Eq. 1.33 both inside and outside the source, given a certain stress-energy
distribution described by Tµν . Starting outside the source, in the vacuum Tµν = 0,
Eq. 1.33 becomes (

∇2 +
ω2

c2

)
hµν(ω,x) = 0. (1.34)

The simplest solution for a signal coming from the source is a spherical wave
expressed as

hµν(ω, r) =
1

r
Aµν(ω)eiωr/c. (1.35)

The amplitude Aµν is derived solving the wave equation inside the source, and it
can be shown that, at first order of approximation, it is related to the stress-energy
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tensor by the following integral relation over the source volume V :

Aµν(ω) =
4G

c4

∫
V

Tµν(ω,x)dx. (1.36)

Replacing it in the outside solution and reverse-transforming to the time domain,
the amplitude of emitted gravitational waves will be

hµν(t, r) =
4G

c4

1

r

∫
V

Tµν

(
t− r

c
,xdx

)
. (1.37)

The integral over the spatial components of the stress-energy tensor can be
expressed, via the multipolar expansion, as the second time derivative of the
quadrupole moment tensor of the system Qij6, i.e. (Ferrari et al., 2020):∫

V

T ij(t,x)dx =
1

2
d2
tQ

ij(t), (1.38)

with

Qij :=
1

c2

∫
V

T 00(t,x)xixjdx. (1.39)

To obtain the physical degrees of freedom with respect to the observer, we
project the metric and the quadrupole moment to the TT-gauge, with an operator
dependant on the observer-source direction that returns the polarization states we
can measure. The gravitational-wave solution will then be (Ferrari et al., 2020)

hTTij (t, r) =
2G

c4r
d2
tQ

TT
ij

(
t− r

c

)
, (1.40)

where we note that emitted gravitational waves depend only on the second time
derivative of the quadrupole moment of the system. It is important to underline that,
for a stationary and spherical-symmetric energy-matter distribution, the quadrupole
moment is constant, and hence Q̈ = d2

tQ = 0, which implies no gravitational-wave
emission. Even if the system is not rotating, as long as it does not violate its
axisymmetry, the quadrupole moment will not change. When, instead, the system
deviates from the rotational symmetry along its axis, Q̈ 6= 0, gravitational radiation
will be emitted. The quadrupole moment behavior of the source can be considered
then as a measure of the asymmetry of the source.

Using the quadrupole moment of the source we can also derive the gravitational
luminosity (Ferrari et al., 2020; Maggiore, 2008) as the total gravitational-wave
energy EGW emitted by the system:

LGW :=

∫
Σ

dEGW
dtdS

dS, (1.41)

where the energy flux per unit surface S, dEGW/dtdS can be expressed in terms of
the first derivative of the perturbation tensor hTTij and hence, using the quadrupole
formalism we have,(Ferrari et al., 2020; Maggiore, 2008)

6It can be shown that the mono- and di-polar terms are null (Ferrari et al., 2020) and we are
neglecting higher order terms than the quadrupolar one.
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Figure 1.6: Scheme of a rotating ellipsoid with three axes of different size and rotational
axis parallel to one of them.

dEGW
dtdS

=
c3

32πG

∑
ij

(
ḣTTij (t, r)

)2

=

=
G

8πc5r2

∑
ij

...
Q
TT

ij (t− r

c
)2.

(1.42)

It can be shown that, dropping the TT gauge, the general quadrupole formula for
the gravitational wave luminosity is (Ferrari et al., 2020; Maggiore, 2008):

LGW (t) =
G

5c5

...
Q

2

ij

(
t− r

c

)
(1.43)

1.3.2 Neutron star emission mechanisms

The main topic of this thesis is the search for continuous gravitational waves
from non-axisymmetric rotating neutron stars. As shown in the previous section,
gravitational-wave emission is closely related to spherical asymmetries of the system.
For steadily rotating objects, if we schematize a neutron star as a rigid ellipsoid
with a certain ellipticity ε, this is translated to cylindrical asymmetry with respect
to the rotation axis.

Moreover, oscillations of the configuration of the neutron star structure can
produce transient signals, according to its normal modes of oscillations, with char-
acteristic frequencies and damping time which depend on the physical phenomena
and forces that drive the oscillations, and on the equation of state of the matter
involved in the process.

Asymmetrically rotating stars

Let us consider an ellipsoid with three semiaxes A 6= B 6= C, rotating with
angular velocity ω = (0, 0, ω) along the axis C. In the chosen reference frame, the
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coordinate axis z is parallel to C (see Fig. 1.6 for a scheme of the system). The
equation describing the ellipsoid is:(x1

A

)2

+
(x2

B

)2

+
(x3

C

)2

= 1. (1.44)

For the sake of simplicity, let us consider the density ρ uniform, the total mass
M and moment of inertia tensor

Iij =

∫
V

ρ
(
r2δij − xixj

)
dx. (1.45)

In the co-rotating frame ,the inertia tensor can be expressed as (Ferrari et al., 2020)

I ′ij =
M

5

B2 + C2 0 0
0 C2 +A2 0
0 0 A2 + B2

 =

Ixx 0 0
0 Iyy 0
0 0 Izz

 , (1.46)

with Ixx,yy,zz the principal moments of inertia.
The traceless quadrupole moment of the system will be

Qij =

∫
V

ρxixjdx = −
(
Iij −

1

3
δijI

)
, (1.47)

where q = qii and I = I ii .
With the configuration of Fig. 1.6, the rotation matrix is

Rij =

cos(ωt) −sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

 . (1.48)

In the inertial frame, we have Iij = (RI ′RT )ij, and replacing it in Eq. 1.47, the
time varying components of the quadrupole moment will be given by

Qij =
Iyy − Ixx

2

cos(2ωt) sin(2ωt) 0
sin(2ωt) −cos(2ωt) 0

0 0 0

 =
Iyy − Ixx

2
Aij. (1.49)

Note that in the last equation, the argument of the periodic functions sin and
cos, in the expression of the time-varying quadrupole momentum, is twice the one
of the rotational matrix. This means that the gravitational-wave frequency emitted
will be twice the star rotational frequency. It can be shown though that, if the
rotational axis does not coincide with any of the principal axes of the ellipsoid, the
gravitational-wave frequency emitted will be the same of the rotational frequency
(Ferrari et al., 2020).

As expected, if Ixx = Iyy ⇒ A = B, the axisymmetry of the rotating object will
be preserved and there will not be any gravitational-wave emission.

We can express the degree of non-axisymmetry in terms of the ellipticity pa-
rameter (Ferrari et al., 2020):

ε := 2
A− B
A+ B

≈ Iyy − Ixx
Izz

(1.50)
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⇒ Qij =
1

2
εIzzAij. (1.51)

The gravitational waves emitted by a non-axisymmetric rotating object will be
then (Ferrari et al., 2020)

h(t, r)ij = −h0 · Aij(t− r/c), (1.52)

and the coefficient h0 is

h0 =
4G

c4r
Izzεω

2. (1.53)

This relation shows how the amplitude of the emitted wave depends on the
moment of inertia of the star and its ellipticity. Moreover, it depends on the square
of the rotational pulsation, so that a faster rotating star will emit more intensely
and its amplitude will fade with the deceleration caused by the energy emission.

The emitted gravitational-wave luminosity from a rotating ellipsoids can be
written as

LGW =
32

5

G

c5
ω6ε2I2

zz. (1.54)

At first order approximation, for non-relativistic rotational speeds, the kinetic
energy of a rotating object is E = Iω2/2, and its time derivative Ė = Iωω̇. If we
suppose a stationary rotating compact star with a given ellipticity ε, it will lose
energy mainly via gravitational waves. Then, we will have LGW ≈ −Ė, with a
decreasing rotational frequency, implying that the system gravitational luminosity
will fade according to the rotational energy loss.

Similarly to what happens for the electromagnetic emission in the case of
pulsars, the frequency f - spindown ḟ relation strongly characterize the physics
of the neutron star. If we assume that the system is not accreting mass (gaining
angular momentum from the inspiral matter and hence causing a positive ḟ), and
is not losing energy through electromagnetic radiation, for the case of gravitational-
wave emission it is possible to directly relate the observed signal dynamics with the
neutron star ellipticity. Making explicit both members of the equation LGW ≈ Ė
we have

32G

5c5
(2πf)6ε2I2 ≈ I4π2f |ḟ |

⇒ ε ≈

√√√√ 5c5

512π4G |ḟ |
f5I

(1.55)

⇒ h0(f) ≈

√
5G

2c3r2
I
|ḟ |
f
. (1.56)

If the compact star loses energy in other ways (e.g., the electromagnetic pulsa-
tions due to its magnetic field), then the ε estimation is an upper limit, which is
related to the so-called spin-down limit (Lasky, 2015).
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Normal modes

So far we have considered the neutron star as a rigid, stationary rotating body
with a relationship between its structure, its moment of inertia and the maximum
ellipticity sustainable for a given rotational speed.

In more realistic cases, neutron stars can be treated as spherical fluid distribu-
tions, with various kinds of perturbations that can be triggered by several dynamical
phenomena, leading to a rich spectrum of normal modes of oscillation (Valeria
Ferrari et al., 2003; Lasky, 2015; Maggiore, 2018), with characteristic frequencies
and relaxation times. The physical processes able to excite these oscillation modes
can arise from different origine: from the early stages of the formation of a neutron
star during the core collapse or coalescence involving at least a neutron star, to
rearrangements of the neutron star structure in equilibrium, which could lead for
example to glitches or flares.

Let us start with the simplest configuration: a non-rotating neutron star modeled
by a polytropic equation of state, without magnetic field. A class of important
vibration modes are the so called f-modes or fundamental modes, which produce
quadrupole variations emitting signals with frequencies (Maggiore, 2018)

f = (2.29± 0.09)

(
M

1.4M�

) 1
2
(

R

10km

)− 3
2

kHz ' 1.7− 2.3 kHz. (1.57)

The damping time of this class of modes is τ ∝ R4/M3 (Maggiore, 2018) and, for
typical neutron stars, with M = 1.4M� and R = 10− 14km, is τ ' 0.1 - 0.3 s.

If we take into account the rotation of a typical neutron star, another important
class of vibration modes constitutes the so-called r-modes or rotation modes, due
to the Coriolis force acting in the fluid inside a neutron star (Maggiore, 2018).

They can present an instability occurring when a r-mode, counter-rotating
along a fixed axis (e.g. z) in the co-rotating frame (as it is a wave driven by a
Coriolis force), can be seen instead as co-rotating by an observer at infinity, if
the star angular velocity is high enough. A gravitational wave emission will drag
away positive angular momentum as seen at infinity. In the co-rotating frame
the r-mode has a negative angular momentum and the subtraction of a positive
angular momentum via gravitational waves will increase its absolute value, conse-
quently increasing the gravitational-wave radiation amplitude with a self-sustaining
loop (Maggiore, 2018). This mechanism is called Chandrasekhar-Friedman-Schutz
instability (Chandrasekhar, 1970; Friedman et al., 1978).

The expected emitted frequency is ≥ 4/3 of the rotational frequency of the
neutron star (Caride et al., 2019), while the expected growth and damping timescales
and the gravitational-wave amplitude are widely uncertain (Caride et al., 2019): key
factors are various forms of viscosity, which could limit the amplitude of the unstable
oscillation, dampen it in a short time or even negating the process altogether (Caride
et al., 2019; Maggiore, 2018).

It is worth to note that f-modes as well can show Chandrasekhar-Friedman-
Schutz instabilities, even though only for rapidly rotating non-superfluid neutron
stars and in this case the expected emitted frequencies are of the order of kHz (Zink
et al., 2010).
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1.3.3 Other gravitational-wave sources

Apart from the signals directly emitted by rotating neutron stars, several other
kinds of possible sources of gravitational waves exist. Among those, we note the
emission from inspiral binaries with a final coalescence, which is the only class
of signals detected so far, with an event list at March 2020 of 90 detections (R.
Abbott et al., 2021a), including black-hole binary systems (like the first detection,
the already mentioned GW150914, B. P. Abbott et al., 2016) and systems with
at least a neutron star (like GW170817, B. P. Abbott et al., 2017d). Their main
features will be described in the next section, but there are other relevant sources
of gravitational waves, which have yet to be detected :

• Bursts from core-collapse supernovae. As it has been explained in Sec. 1.2.3,
when discussing the formation of neutron stars, this class of supernovae trigger
when the mass of the object reaches the Chandresekhar limit of 1.4M� and
the electron degeneracy cannot any more hold the gravitational pressure.
The resulting dynamic of the collapse plus the neutrino-driven bounce and
shockwave can have a highly varying quadrupole moment, with a burst of
gravitational waves emission (Powell et al., 2017). Few waveform examples
are shown in Fig. 1.7.

• Stochastic gravitational-wave background. It is a background of gravitational-
wave emission that can come from the superposition of many unresolved astro-
physical sources (Regimbau, 2011) or from cosmological phenomena (Maggiore,
2000).

The cosmological background would have great consequences for the cosmology
research field, since it represents a probe on the stages of the Universe around
t ∼ 10−43s (Maggiore, 2000), much earlier than the decoupling of the Cosmic
Microwave Background happened at t ∼ 380× 103 years.

In fact, the decoupling of a fundamental interaction particle (e.g. photons,
gravitons) from the primordial plasma, takes a snapshot of the Universe at the
decoupling time tdec, with a specific temperature Tdec. When the interaction
is much weaker, like the gravitational one with respect to the electromagnetic
one, the decoupling — and hence the respective gravitational-wave emission
— happens at a far earlier time, with spectra able to give information on the
Universe evolution at much higher energies far before the time of the Cosmic
Microwave Background.

Although the spectrum of the cosmic gravitational-wave background is strongly
model dependent, with inevitable implications from quantum gravity theories
and beyond Standard Model particle physics, spectra coming from general
consideration can be modeled as power-laws ∼fα, with α between 0 and 3,
and cutoff frequencies at the GHz order (Maggiore, 2000).

More details on the search for stochastic gravitational waves background will
be given in Chapter 2, since the analysis method used for the fast identification
of continuous waves from non-axisymmetric rotating neutron stars, which is
the topic of the current thesis, is normally used for this class of signals.
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Figure 1.7: Simulated waveform using four models of core collapse supernova, with a
10kpc far 15M� progenitor star (20M� for the bottom right plot) (Powell et al., 2017).
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Figure 1.8: Top: evolution of the signal emitted by inspiral binaries, following the
characteristic chirp behavior. Bottom: plots showing waveform and amplitude detected in
the frequency-time plane for GW150914 (B. P. Abbott et al., 2016).
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• Compact-binary coalescences. This class of signals, the only one detected
so far (R. Abbott et al., 2021a), comes from the last stages of a binary
system with compact objects (black holes and/or neutron stars). Due to a
quadrupolar variation, the system loses energy resulting in the gravitational-
wave emission. Because of the energy loss, the orbits of the system become
closer, increasing the signal frequency as well as its amplitude, until the two
objects coalesce together. The shape of the signal is the characteristic chirp
waveform shown in the top panel of Fig. 1.8 (Ferrari et al., 2020), while
in the bottom one the waveform and frequency-amplitude behavior of the
GW150914 coalescence event (B. P. Abbott et al., 2016) are shown.

1.4 Detectors
The gravitational-wave detectors LIGO, Virgo and KAGRA (Aasi et al., 2015;

Acernese et al., 2014; Somiya, 2012) are two-arms interferometric antennas which
measure the effect of gravitational waves crossing them via the geodesic deviation
caused on their arms.

The basic scheme is a Michelson interferometer, where a laser beam is split
by a semi-transparent mirror (the beam-splitter) between two orthogonal arms.
At the end of each arm, a mirror reflects back the beam to the splitter, where
it is reconstructed via their respective interference. The interfered beam hits a
photodiode, where the light power is measured.

The use of the light is fundamental because its travel speed does not change
if it crosses any metric perturbations on its path. Considering the interferometer
mirrors as test masses, we measure the geodesic deviation between them caused
by the variation of the metric, i.e. the difference in distance as seen by a locally
inertial frame as a variation of the path length crossed by the circulating laser.

1.4.1 Michelson configuration

Let us consider a plane gravitational wave hµν(t), linearly polarized along the +
polarization and incident perpendicularly on the plane of the interferometer. From
now on, we will consider only metric perturbations in TT-gauge, so the superscript
TT will be dropped. The test masses in ground based detectors are hung forming
pendulums. Let us consider the test-mass n put at a distance r(n) = (x

(n)
i − xCMi )

from the center of mass of the system.
Since the ground based interferometers have arms of the length of few kilometers,

the period of a gravitational wave within the sensitivity range of the detectors will
be always much higher than the time of a complete travel of a photon circulating in
the detector. We can then safely use the small antenna approximation (J D Romano
et al., 2017) to simplify the treatment.

As seen by an inertial frame, the geodesic deviation caused by the action of the
incoming wave on the detector can be expressed as an acceleration field centered in
the center of mass:

d2

dt2
δxjtj

(
t, r(n)

)
= a

(n)
j

(
t, r(n)

)
=

1

2c2
∂2
t hjkr

(n)
k . (1.58)
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Figure 1.9: Simplified scheme of a ground based Michelson interferometer adapted
from Pitkin et al., 2011. The beam splitter (m1) is in the origin of the coordinate frame,
the x and y axes are along the detector arms.

Taking a reference frame with origin on the beam splitter and the two axes
along the arms (see Fig. 1.9), we can write the geodesic deviation, independently,
for the three test masses of the detector and the two coordinates (the gravitational
waves are always transverse with respect to their propagation). Defining t(n)

r the
relaxing time and ω

(n)
p the characteristic pulsation of the pendulum n, we have

(Maggiore, 2008; Saulson, 2017):

ẍ
(n) + ẋ(n)

tr
+ ω2

px
(n) = 1

2c2

[
ḧ11

(
x(n) − xCM

)
+ ḧ12

(
y(n) − yCM

)]
ÿ(n) + ẏ(n)

tr
+ ω2

py
(n) = 1

2c2

[
ḧ21

(
x(n) − xCM

)
+ ḧ22

(
y(n) − yCM

)]
.

(1.59)

Considering that the interferometer has both arms with same length L and, for
the sake of simplicity, that the polarization axes coincide with the coordinate axes,
then for the TT-gauge, we have h11 = −h22; h12 = h21 = 0, and we can write the
length difference caused by a gravitational wave as the differential equation

d2

dt2
∆L+

1

tr

d

dt
∆L+ ωp∆L =

1

c2

d2

dt2
h11L. (1.60)

With a difference ∆L for the length of the arms, the corresponding phase
difference is ∆φ = ωγ∆L/c, where ωγ/2π is the frequency of the photons emitted by
the laser. When a sinusoidal, linearly-polarized gravitational wave h(t) = h0cos(ωGt)
crosses the interferometer, with amplitude h0 and pulsation ωG, the phase variation
acquired by a photon during the 2L long trip from the beam splitter to the end-
mirror and back will be (Maggiore, 2008; Saulson, 2017)

∆φ ≈ 2ωλ
c
h0cos (ωGt) . (1.61)
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When a signal crosses the interferometer, the photodiode will detect an oscillation of
the light power at the frequency of the signal and with amplitude ∝ h0. DefiningWin

the light power fed by the laser, the output power will be then Wout = Wincos
2(∆φ)

and it is a direct measure of h(t).
What is usually done for gravitational interferometers is to modulate the input

light beam and the length of the arms in order to have an operating point of the
instrument very close to the so-called dark fringe, that is, with Wout = 0 in absence
of a gravitational-wave signal. In this way the signal-to-noise ratio is maximized
and the detector is a null instrument, which is fundamental in a situation where
we expect a very small fluctuation of power due by the very small amplitudes of
gravitational-wave signals.

The antenna pattern

For the sake of simplicity, in the previous section we assumed a linearly polarized
wave crossing face-on the interferometer. For a generic non polarized wave, coming
from any direction with respect to the detector plane, the response of the detector
depends on the polarization and incidence angles (Maggiore, 2008; J D Romano
et al., 2017; Saulson, 2017).

We set the origin of the reference frame on the beam splitter, with z the axis
orthogonal to the arms, according to the scheme in Fig. 1.10, let us define:

• l̂1 and l̂2 the unit vectors pointing along the two arms,

• r̂ the unit vector pointing to the sky, slanted with respect to the detector axis
by polar angles (θ, φ),

• p̂ and q̂ unit vectors orthogonal to r̂, defining the polarization angle ψ.

The antenna pattern for the two polarization states, given the detector and
polarization basis vectors, are defined as (Maggiore, 2008; J D Romano et al., 2017;
Saulson, 2017):

l1
l2

r

θ

ϕ

z

h

pq

Figure 1.10: Scheme of an incoming wave, showing the polarization and detector basis
used to define the antenna pattern of the interferometer.
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Antenna patterns

+ polarization × polarization averaged

Figure 1.11: Top: antenna pattern for a Michelson interferometer, in the small antenna
approximation, for +, × and averaged polarization . The beam splitter is at the origin
of the pattern, and the arms orientation are indicated by the solid black lines . Bottom:
antenna patterns represented as colorbar plots on a Mollweide projection of the Earth, for
LIGO and Virgo interferometers. The plot shows — at a fixed time — how a detector (at
different positions on Earth) can respond to gravitational-wave signals, in function of the
incoming direction in the sky J D Romano et al., 2017.
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j
2).

(1.62)

The detector output can then be written as h(t) = F+h+ + F×h×, where the
meaning of h+ and h× is the same of those shown in Eq. 1.23.

The values of F+ and F× are between 0 and 1 and tell us how the response of
the detector is reduced by the misalignment between the incoming wave and the
arms plane. It is important to remark that the direction of r̂ may change with time
with respect to the detector frame, and the time dependence of the detector output
includes the time variation of the sky and polarization angles.

For a network of interferometers on Earth, it is interesting also to relate their
response to their position, since according to their distribution we are more or less
sensitive to signals coming from certain directions. See Fig. 1.11 for an example
given by the LIGO and Virgo detectors.
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Figure 1.12: A scheme that shows the fundamental components of ground-based of
second-generation gravitational interferometers. .

1.4.2 Fabry-Perot Cavity

Eq. 1.61 shows that the sensitivity of the detector depends on the length of the
optical path 2L To increase it, each arm of the interferometer is usually equipped
with a Fabry-Perot cavity, putting a semi-transparent mirror between the end
mirror and the beam splitter: in this way the photons entering the cavity are
reflected several times before being extracted and directed to the beam splitter,
to be ultimately reconstructed with the light from the other arm. The cavities
operate in resonant condition, where the light circulating inside will be in the form
of standing waves (Maggiore, 2008; Saulson, 2017).

The characterizing parameter of a Fabry-Perot cavity is its finesse F :

F = π

√
R1R2

1−R1R2

, (1.63)

with R1 and R2 being the reflectivity of the entrance and terminal mirror, respec-
tively. The finesse defines how many times a photon can be bounced before being
absorbed in the system because of imperfections in the reflectivity of the mirrors.
The effective number of bounces is then Neff = 2F/π, while the effective arm
length is NeffL. The time before the photon is absorbed is τ = NeffL/c and its
inverse is the frequency cut-off of the cavity: ωc = 1/2πτ . Hence, we obtain the
effective cavity optical length (Maggiore, 2008; Saulson, 2017):

Lopt =
2FL
π

[
1 +

(
ωG
ωc

)2
]− 1

2

. (1.64)

This formula implies that, after the cut-off frequency of the cavity, the sensitivity
of the detector degrades (Maggiore, 2008).

Two other important components are present in the ground-based detectors: a
power recycling mirror set after the input laser source, which creates a cavity whose
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purpose is to increase the light power circulating in the interferometer in order to
reduce the noise; a signal recycling mirror at the output of the dectector, right
before the photodiode, which reflects back only the output light power, in order to
increase its significance. A simplified scheme of a gravitational-wave detector, in
Fig. 1.12, shows the described components.

1.4.3 Main noise sources

The sensitivity of a gravitational interferometer is determined by its noise
sources. Some of the most important (Saulson, 2017) are shown in the left panel of
Fig. 1.13 as design sensitivity of the LIGO detectors (Aasi et al., 2015):

• quantum uncertainty on the optical readout at the photodiode (i.e., the
so-called quantum noise);

• seismic oscillations due to crustal activity on the test masses pendulums
(seismic and Newtonian noise);

• thermal oscillations of the detector components (thermal and Brownian noise).

In the plot is shown also the noise by the scattering of the laser beam with the
residual gas survived the vacuuming of the cavities.

In the right panel we find the estimation of the best sensitivity reached by the
LIGO and Virgo detectors during the O3 run (Barsotti et al., 2018; Verkindt, 2021).
The shape of the curves shows that in all three detectors exists a frequency region,
roughly between 100 and 200 Hz, where the sensitivity is significantly better.

Usually, the sensitivity of the detectors is shown as the square root of the noise
power spectral density Pn(f), the so-called strain sensitivity hstrain(f) , with the
dimensions of Hz−1/2. A more detailed discussion on how these quantities are
defined is given in Sect. 2.1.
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Figure 1.13: Left: LIGO design sensitivity curves, explicating the main noise sources
(figure from Aasi et al., 2015). Right: plot of the O3 LIGO and Virgo best sensitivity
curve estimates (Barsotti et al., 2018; Verkindt, 2021)



Chapter 2

Data analysis for Continuous Waves

One of the most interesting and promising classes of gravitational-wave sources
is represented by Galactic non-axysimmetric rotating neutron stars. They emit
periodic signals with frequency twice or equal their rotational frequency, and an
amplitude that is expected to be below ∼ 10−26 - 10−25 (R. Abbott et al., 2021c,
2022a; Sieniawska et al., 2019). To give an element of comparison, the detected
amplitudes from compact binary mergers reached amplitudes of the order of 10−22 -
10−21, with sources hundreds of Mpc far from our galaxy.

In general, the data analysis in gravitational-wave searches plays a key role for
any kind of source. In fact, given the faintness of the signals we observe, the noise
fluctuations typically overcome the signals by orders of magnitudes. To be able
to filter out the noise and isolate the signal from the detector data, a common
approach has been to implement cross-correlation based filtering techniques.

Via the use of cross-correlation, the output of a detector is compared to a
filter function that reproduces the expected signal shape, or, in case of stochastic
background searches, to the output of another detector. The objective is to enhance
correlated features (the modeled signals), discarding the supposedly uncorrelated
noise. In the respective fields, it can be shown that these methods are the optimal
way to define a detection statistics that, filtering out noise from the detectors,
provide the best signal-to-noise ratio (SNR). For continuous waves, given the
faintness of the sources, we need also to integrate the data over a long time period,
typically of the order of months.

Since the efficiency of these algorithms depends strongly on the accuracy of the
signal template taken from the modeled source, for continuous waves this method
can be indeed applied when we know exactly the parameters of the emitting neutron
star. Unfortunately, besides the ∼ 3000 known pulsars (ATNF, 2021), it is expected
from population studies that an order of a billion of undetected neutron stars
populate the galaxy (Bisnovatyi-Kogan, 1992).

For unknown sources, it is impossible to derive the expected signal for a matched-
filter analysis, so a wide set of possible templates should be generated. To generate
a template we need:

• the intrinsic parameters of the expected emission, which -as we will see- are 2
in a first-order approximation (f and ḟ);

• the Doppler effect due to the Earth rotation and orbital motion, which adds

31
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to the parameters to take into account the two sky coordinates, in order to
track down the observer-source direction;

• the 5 Keplerian orbital binary parameters (Dhurandhar et al., 2001; Leaci
et al., 2017) for sources in binary systems.

For the search of yet unknown neutron stars, the combination between the lower
amplitudes and the size of the parameter space makes this kind of analysis far
more challenging. We are forced then to find a trade-off between the computational
resources required (time, computation power, device memory capacity), to achieve
a certain sensitivity, and their availability.

Summarizing then, searches for continuous waves can be broadly split into the
following categories, which require a different data-analysis approach :

• targeted searches which look for known pulsars, whose parameters are known
enough to run cross-correlation based coherent search algorithms (e.g. R.
Abbott et al., 2021c);

• directed searches where a portion of the space parameter, notably a portion
of the sky, is analyzed looking for unknown neutron stars where we expect to
have a higher probability to find sources, like the Galactic Center (R. Abbott
et al., 2022e; O J Piccinni et al., 2020) or supernova remnants (R. Abbott
et al., 2021e);

• all-sky searches where no parameters are known and the search is performed
spanning along all the sky directions (B. P. Abbott et al., 2017a, 2019b; R.
Abbott et al., 2022a).

• other searches on more exotic sources, like dark matter particles (R. Abbott
et al., 2022d) around spinning black holes, in particular boson clouds (R.
Abbott et al., 2022b; Palomba et al., 2019).

2.1 General methods for data analysis
The data used for the analysis of gravitational-wave searches are usually in the

form of strain data series, which come from the calibration process of the raw data
of digitized electrical output from each detector readout system (Acernese et al.,
2022; Sun et al., 2020).

It is important to remark that all fundamental methods for the analysis of
gravitational waves start from the assumption that the noise follows a stationary
Gaussian distribution over time. Because of this, after the calibration process, a
series of cleaning procedures are used to minimize the non-stationarity features
that are present in the noisy data (Vajente et al., 2020). In the O3 run a high
rate of noise transients, usually called glitches, threatened to lower significantly the
sensitivity of long-term searches like the ones for continuous waves and stochastic
background. Hence, to exclude several glitches from the analysis, another cleaning
procedure called gating has been used (Mata et al., 2021; Zweizig et al., 2021),
consisting in vetoing the identified glitches setting to zero the time period interested
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in the time series, with a smooth fade-out/in transitions of 0.25 seconds before and
after.

At the end, the data we analyze have a form of a function of time s(t) =
h(t) + n(t), where h(t) is the contribution given purely by the gravitational-wave
signal and n(t) is, in good approximation, the noise following a stationary Gaussian
distribution.

We can characterize now the data coming from gravitational-wave detectors.
Few key concepts are useful in signal analysis, which we will explained below:

Fourier transform. Given a function of time s(t), its Fourier transform s̃(f) is
defined as (Saulson, 2017)

s̃(f) :=
1√
2π

∫ +∞

−∞
s(t)e−i2πftdt. (2.1)

The result of the Fourier transform is a complex function of frequency, con-
taining all the information of the original time series. As we will see, the
square modulus of the Fourier transform is proportional to the spectra of the
time-dependent function.

If the transformed function is real, then the Fourier transform have the
symmetry property s̃(−f) = s̃ ∗ (f).

Cross-correlation. In gravitational-wave analysis, the cross-correlation is widely
used to measure how related two functions of the same variables are, as a
function of a relative displacement. Taking for example two time series s1(t)
and s2(t), it is defined as (Saulson, 2017) as

s1 ? s2(τ) :=

∫ +∞

−∞
s1(t)s2(t+ τ)dt, (2.2)

with τ the offset between the two functions. If s1 = s2 = s the self cross-
correlation s ? s(τ) is called auto-correlation

Power spectral density. Another quantity to characterize the data in the fre-
quency domain is their spectrum, defined as the Fourier transform of the
autocorrelation of the time series (Saulson, 2017):

P (f) :=
1√
2π

∫ +∞

−∞
s ? s(τ)e−i2πfτdτ. (2.3)

The power spectral density of a function is closely related with its periodogram,
defined as (Saulson, 2017)

PT =
|s̃(f)|2

T
. (2.4)

In the limit T →∞ converges to the power spectral density of s(t). As we
will see usually, to estimate the power spectral density with finite time series,
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the data are split in several segments and the periodogram is averaged along
each segment.

Since we are using real functions, |s̃(f)|2 = |s̃(−f)|2, we will consider only
f ≥ 0 and we define the single-sided power spectral density as 2P (f).

Assuming stationary noise, we can define the power spectral density of the noise
Pn(f) through the ensemble average of the noise components (Maggiore, 2008):

〈ñ∗(f)ñ(f)〉 = δ(f − f ′)1

2
Pn(f). (2.5)

The ensemble average is the average computed over a statistical ensemble made
by many realizations of the system. In practice we can consider the same detector
at many different times as different realizations of the statistical ensemble1, split
the data in chunks of duration Tcoh, computing the time-limited Fourier transforms
from each chunk and average the periodogram over them.

In this case the approximation of the delta function for finite time, when f = f ′,
brings δt(0) = Tcoh and we have

〈|ñ(f)|2〉 =
1

2
Pn(f)T ⇒ Pn(f) = 2〈|ñ|2〉∆f, (2.6)

where the factor 2 comes from the fact that, being both noise and signal components
of the output real functions, we are integrating only over positive frequencies and
doubling the obtained value to have the one-sided spectral density.

This quantity has the dimensions of Hz−1. The sensitivity of the detectors is
usually expressed as strain sensitivity hstrain(f) =

√
Pn(f) with dimensions Hz−1/2.

2.1.1 Filtering out noise

Data analysis methods based on the use of the cross-correlation (Maggiore, 2008;
Saulson, 2017) are widely used to extract various classes of signals from data whose
noise level is higher than the expected gravitational-wave amplitude (for example,
see B. P. Abbott et al., 2016; R. Abbott et al., 2021c,d).

We keep in mind that the data coming from the detector can be split in two
independent contributions s(t) = h(t) +n(t), from the signal and noise, respectively.
The concept is that, cross-correlating s(t) with a well defined function H(t), from
now on called filter function, the noise component n(t) will not be correlated with
the filter, not contributing to the cross-correlation integral; conversely, if the signal
component matches with the filter, it will contribute positively. We can define then
a detection statistic whose expectation value maximizes the signal-to-noise ratio
SNR.

It can be shown that the integral in the time domain of the cross-correlation
s ? H(τ) is equivalent to the following inverse Fourier transform (Maggiore, 2008;
Moore et al., 2014; Zubakov et al., 1962)

1An estimation on the minimum time needed to consider the detector as different realizations is
∼ 50 s, derived in Joseph D Romano et al., 2015 computing the auto-correlation of the strain time
series for a single detector, in the context of stochastic gravitational-wave background searches.
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Y (t) = s ? H(τ) =

∫ +∞

−∞
s(t)H(τ − t)dt =

=

∫ +∞

−∞
ei2πfts̃(f)H̃(f)df.

(2.7)

The optimum filter function H̃ has the form:

H̃(f) = 2
h̃∗(f)

Pn(f)
, (2.8)

with signal template h̃(f) generated from theory and Pn(f) the noise spectral
density defined in the previous section (Eq. 2.6)2.

We have the so-called matched filter method, where the data are compared to a
set of templates, in order to search for the one that gives an SNR above a certain
statistical confidence. Coincidences from other detector network data are searched
for to validate the detection.

The matched filtering method can be used for analyses where the signal can be
well parametrized in the template, and whose parameters space is of an affordable
size. This is the case of coalescence of compact objects (B. P. Abbott et al., 2016,
2017c, etc) or for known pulsars (R. Abbott et al., 2021c), but for blind searches of
neutron stars other approaches need to be developed, as it will be better explained
in Sec. 2.2.

Since the gravitational-wave signal is expected to be far lower than the instru-
mental noise, in the case of stochastic gravitational-wave background searches the
data from two detectors are cross-correlated, exploiting the hypothesis that, being
the signal by definition correlated in the two data streams, their respective noise is
uncorrelated. As it will be shown in Sec. 3.1, with this approach, a specific optimum
filter for the cross correlation of two detectors has to be derived. Thanks to the
generality of the method, it will be explained also how the search for stochastic
background searches, with anisotropic angular distribution, can be used also for
point-like sources like rotating neutron stars.

2.1.2 Searching for periodic signals

Unlike short-lasting signals, like bursts or compact-binary coalescences, the
search for persistent periodic signals has to take into account the Doppler effect
from the orbital and rotational Earth motions.

In the case of a monochromatic source, if we had an isolated detector freely
traveling in space, the signal would appear as a (time limited) delta function in the
power spectral density. If it generates data series with pure Gaussian noise, given

2The role of Pn in the denominator of the filter comes from the fact that the noise we are
considering is not white, i.e., it does not have a flat distribution. Being not white, the filter weights
the statistics using the power spectral density of the noise, in order to give less significance to the
worst frequency bands. The SNR in this way is increased giving more significance not only to the
bands where the source is expected to have the most spectral emission via the template h̃(f), but
also to the most sensitive frequency regions of the detectors (Mitra et al., 2008; Saulson, 2017)
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an observation time Tobs, we expect the SNR scales proportional to
√
Tobs (Saulson,

2017). It would be enough then to gather data for a sufficient amount of time to
have a detection: with sufficient statistics we would identify as a signal a narrow
single spectral peak above the noise fluctuations, at the frequency of the incoming
wave .

In ground-based detectors the signal peak is instead modulated by the Doppler
effect. If the frequency of the signal is f0, v(t) is the observer velocity vector at the
time t and Ω̂(t) is the source direction unit vector, the received frequency is given
by the relation (Saulson, 2017):

f = f0

(
+

(v · Ω̂)(t)

c

)
(2.9)

and hence the Doppler spread δfdopp can be defined as

δfdopp = f0
(v · Ω̂)(t)

c
(2.10)

The maximum Doppler spread caused by Earth rotation, for a detector located
at the equator, is δfmax/f0 = vrot/c ∼ 10−6 Hz, while for the orbital motion we
have the more significant value of δfmax/f0 = vorb/c ∼ 10−4 Hz (Saulson, 2017). In
this case, the spectrum of a single monochromatic peak is modulated in a series of
sub-peaks around the carrier frequency f0. If the modulation frequency is fm , the
number of sub-bands is approximatively equal to the modulation index δ, defined
as (Saulson, 2017)

δ :=
f0

fm

(v · Ω̂)max
c

, (2.11)

where (v · Ω̂)max is the maximum value of the product over the modulation cycle.
The power will be divided by each of the sub-peaks, which will have a spectral

amplitude ∼ 1/
√
δ times the amplitude of the single peak in the unmodulated case.

For the daily modulation (fm = 1.2× 10−5 Hz) there are ≈ 10 sidebands, causing a
factor 3 amplitude loss; with the annual modulation (fm = 3.2× 10−8 Hz) there are
≈ 106 sidebands and the spectral peak will be reduced by a factor of 103 (Saulson,
2017).

This would decrease dramatically the chances to detect a signal and, because
of that, methods to avoid or reduce the Doppler effect are adopted in the various
classes of search. For example, in targeted or directed searches the Doppler effect is
corrected at the time series level for each of the directions we want to inspect (R.
Abbott et al., 2021c,e; Saulson, 2017). When passing to the frequency domain, the
modulation spread for the given direction in this way is eliminated and the signal
can be fully recovered in all its original features (Saulson, 2017).

When the source parameters are unknown, like in all-sky searches, a method
adopted to reduce the computational cost of the search has been the semicoherent
approach, which implies splitting evenly the time series in segments with a certain
length. This length, far smaller than the observation time, is called the coherence
time (Tcoh) of the semicoherent search. The analysis is performed on each time
segment and, afterwards, the detection statistics are properly integrated. Since, in
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the case of semicoherent searches, the loss in sensitivity with respect to the coherent
optimal search is ∝ 4

√
Tobs/Tcoh (Frasca et al., 2005), the objective is to minimize

the loss in sensitivity, for example maximizing the coherence time.
The natural frequency resolution of semicoherent searches is given by the inverse

of the coherence time, that is δf = 1/Tcoh. As we will see better in Sect. 2.2, an
approach to bypass the Doppler spectral spread is to properly choose a coherence
time, in order to have a frequency resolution large enough to be able to contain in a
single bin all the frequency modulation width generated in that time (Astone et al.,
2014). Since the Doppler spread, as shown in Eq. 2.10 depends on the frequency,
in Astone, Frasca, et al., 2005; Frasca et al., 2005 it has been shown that, to satisfy
this condition when moving to the frequency domain, Tcoh has to be lower than

Tmax(f) = Torb

√
c

4π2Rorbf
≈ 1.1× 105

√
f

s, (2.12)

where we have neglected the effect of the daily modulation, and Torb and Rorb are
respectively the period and the average radius of the orbital revolution.

It will be shown in Sect. 2.2 that with this method the frequency resolution will
be still fine enough to see a difference in frequency between the Fourier transforms
of different segments, due by the daily and yearly Doppler effects. Collecting the
most significant peaks from each segment in the frequency domain, along the full
observation time, we will then be able to correct the frequency of those peaks to
remove the Doppler shift. In this way we can retrieve the expected frequency-time
evolution for a given sky direction.

The Doppler effect represents an issue when it comes to improve the sensitivity
of the searches, but at the same time it allows to retrieve the source locations. The
gravitational-wave interferometers behave like antennas, that is they cannot be
oriented like a telescope, but receive at the same time signals from all over the sky
directions; the Doppler phase evolution of a signal is an important signature that
allows us to effectively aim at a sky region when trying to resolve a source from the
noise.

2.2 The FrequencyHough pipeline
As already mentioned, data analysis for all-sky blind searches requires compu-

tational resources at present day unachievable to cover the full parameter space
with coherent methods. Because of that, hierarchical algorithms (referred to as
pipelines) are developed using the semicoherent approach.

So far several independent pipelines have been developed, actively used in all-sky
searches (R. Abbott et al., 2022a). One of them, the FrequencyHough pipeline (As-
tone et al., 2014), uses an adaptation of the so-called Hough transform (Hough,
1962) pattern recognition method; I have recently modified the algorithm in order
to use modern graphical processing units (GPUs) and deployed for the O3 run
analysis in the framework of this PhD project (see Sect. 2.3 and La Rosa et al.,
2021 for more details).

The pipeline is composed by several steps explained below and summarized in
the flowchart in Fig. 2.1 (Astone et al., 2014).
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Figure 2.1: Flowchart showing the FrequencyHough search pipeline as exposed in
Sect. 2.2, edited from (Astone et al., 2014).

Short Fourier transform database

The semicoherent pipeline starts from splitting the data time series with a
certain time interval and compute the Short Fourier Transform (SFT) for each time
segment. From the cleaned and calibrated frame files then a database of data in the
frequency domain is generated using the Fast-Fourier Transform (FFT) algorithm
with a certain segment duration, which we indicate with Tcoh.

As we have seen in Sect. 2.1, the frequency resolution of a time-limited Fourier
transform depends on the length of the time segment, following the relation δf =
1/Tcoh. We have seen as well that the Doppler effect due to the Earth motion causes
a spread of a spectral peak with a width δfdopp depending on its frequency. For the
FrequencyHough pipeline, the length of the segment is chosen in order to have a
frequency resolution δfdopp < δf . In this way a signal can be spread by the Doppler
effect at most in two contiguous bins and the loss of spectral power is minimized.

For the searches performed so far, a database of four Tcoh bands has been
generated, i.e.:

f(Hz) Tcoh(s)

10-128 8192
128-512 4096
512-1024 2048
1024-2048 1024
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This choice is practical to ease the deploy of the search, but it causes a loss in its
efficiency: we have defined a coherence time good for the maximum of the frequency
interval of the dataset, for example, 4096 s for the band that ends at 512 Hz. But to
analyze lower frequencies, let us say a small band of 10 Hz around 200 Hz, we could
use a longer coherence time and have a better sensitivity, without worrying about
a Doppler spread higher than our frequency resolution. To overcome this problem
and increase the overall efficiency of all-sky searches, a new data infrastructure has
been developed, called Band Sampled Data (BSD) (O. Piccinni et al., 2018). With
the BSD data structure is possible to compute with a large adaptability the FFTs
with the Tcoh needed. Thanks to this, instead of defining only four different bands,
we can define a higher number of shorter sub-bands with different coherence time,
which will result then in general longer granting a gain in sensitivity. .

Either way, at the end of the SFT database generation process, the data of a
several months long run will be organized in a series of Fourier transforms, each of
them coming from a single time segment and hence identified by their initial time
stamp ti (see Fig. 2.2)

Peakmap

Once that the data in the frequency domain are organized in the way described
above, we can start the search of the signal. Since we expect periodic signals, with
a very small spindown for the typical coherence time of ∼minutes, we are looking
for sharp peaks in the frequency domain.

«««< HEAD From each FFT h̃i(f), computing their squared modulus we have
the periodogram Si(f) = |h̃i(f)|2, where the index i runs over the N segments
spanning the time period we are analyzing (e.g. the full observational run or a
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Figure 2.2: Scheme of the SFDB construction: each segments of the time series is Fourier
transformed and the set of short Fourier transforms constitutes the database.
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Figure 2.3: Example of a peakmap generated with O2 data with a pulsar injection. The
frequency Doppler shift due to the yearly Earth motion is widely visible.

portion of it). The average spectrum SARi(f) is estimated with an auto-regressive
method (Astone, Frasca, et al., 2005). The ratio

Rij =
Si(fj)

SARi(fj)
,

======= From each FFT h̃i(f), computing their squared modulus we have the
periodogram Si(f) = |h̃i(f)|2, where the index i runs over the N segments spanning
the time period we are analyzing (e.g. the full observational run or a portion of it).
An estimation of the average noise spectrum over the frequencies SARi(f) is derived
with an auto-regressive method discussed in details in Astone, Frasca, et al., 2005.
The principle is that the estimator of the spectrum should not be affected by high
spectral peaks, and if the noise level varies, the estimator should be able to follow
the noise variations.

The ratio
Rij =

Si(fj)

SARi(fj)
, (2.13)

»»»> 02d8ef2976e03f639d9fac6b6dbdce2d3f5f8091 represents a whitened estimation
of the statistical significance of each frequency bin j from a given FFT.

Setting a threshold θ on the value of the ratio Rij , we can select -from each FFT-
the peaks above that value which are also local maxima. Since we are working with
Fourier transforms discrete in frequencies, with a resolution δf = 1/Tcoh, and since
each FFT is uniquely identified by their time stamp, we will have in this way a
collection of the most significant peaks in the frequency-time plane.

This collection is called peakmap, and it is usually represented as a Boolean
matrix in the frequency-time coordinates, where each peak is identified as a 1 and
the rest of the space is left as 0. To save memory usually it is expressed as a sparse
matrix, that is, as a list of the coordinates of the peaks. If a periodic signal is
present in the data, it will show a characteristic pattern in the peakmap, which
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is analyzed by the FrequencyHough transform (see Figure 2.3 for an example of a
peakmap with an injected signal).

It is worth to underline that if, from one side, if we selected all the spectral
peaks above threshold, instead of only those which are local maxima, would imply a
higher sensitivity because in this way we would consider peaks with a lower spectral
amplitude than the maxima (see Sec. 2.2.3 for more details), but it would increase
dramatically the computation and memory, since the number of peaks would be
much higher. Moreover, using only the maxima, the robustness of the search against
noise spectral disturbances is increased (Astone et al., 2014).

To improve the robustness of the search, the peaks collected can be weighted
with values between 0 and 1, taking into account noise non-stationarity and the
antenna pattern of the detector during the observation time. In this way, each peak,
apart its time-frequency coordinates, has attributed a weight and will contribute
accordingly to the final detection statistics.

Doppler Correction and FrequencyHough

Having identified a characteristic pattern in the frequency-time image represented
by the peakmap, a pattern recognition algorithm like the Hough transform suits
naturally for its identification.

In its original implementation, the Hough transform takes as input some images
where a search for straight lines is done, returning as output an image of the portion
of the analyzed space parameter, the so-called Hough map, where each point will
have a certain value or number count, usually referred to as peak amplitude or simply
amplitude. The values of the Hough map are related to the statistical significance
that a line with certain parameters was present in the input image. Even though
the Hough transform can be generalized in order to search not only for straight
lines, but even a general functional form with a certain set of parameters (Ballard,
1981; Duda et al., 1972), the higher is the number of parameters of the search, the
more its implementation can become complex.

Even though, with the proper frequency resolution, we are able to contain the
peaks Doppler spread within a frequency bin, if we do not correct the yearly and
daily frequency shifts, a signal in the peakmap will have a periodic pattern whose
yearly Earth modulation is visible in Figure 2.3. This means that the two sky
coordinates will be other search parameters, expanding further the computation
power an the memory requirements to perform the search3. Since we expect that
the source emission would follow a straight line in the frequency-time plane, it is
indeed simpler to search for this pattern instead of a signal that is modulated both
by the Earth rotation and orbital motion.

The choice done is then to correct the frequency shift of the peaks given a
sky direction, in order to eliminate the Doppler effect. This is done for each sky
direction Ω̂, according to the recorded velocity vector vj of the detector at the jth

3If the parameter space is 2-dimensional, the same will happen for the produced Hough map;
with a 4-dimensional parameter space , where the two added parameters span over the full sky,
the size of the output image becomes easily unmanageable.
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Figure 2.4: Example of a FrequencyHough map, from a portion of a peakmap taken
from O2 real data and a straight line superimposed in order to simulate a continuous-wave
signal. The parameters of the straight line labeled as p in the peakmap are retrieved as
a point in the parameter space , where the lines coming from the transformation of the
input space intersect together in the same area.

time, with the following equation:

fcorrj =
fj

1 + Ω̂ · vj
. (2.14)

This is one of the most delicate parts of the pipeline, because an inaccurate
correction of the Doppler effect can cause a severe loss in sensitivity. To search
over the full sky, a proper grid of sky coordinates is defined in a way that, when
we correct the peakmap, a loss of a signal is prevented (more details are given in
Sec. 2.2.1).

Once the peakmap has been corrected for a given sky direction, it is possible
to look for the characteristic pattern of an emitting neutron star. Assuming that
the variation of the signal frequency is small enough, we can approximate, at first
order on the frequency derivatives, the time law of the signal frequency as

f(t) = f0 + ḟ(t− t0), (2.15)

where f0 is the source frequency at the starting observation time t0 and ḟ is the
spindown term. With the above assumptions, the pattern of the signal in the
Doppler corrected peakmaps will be a straight line, with parameters f0 as the
reference ordinate and ḟ as slope.

The adapted version of the Hough transform pattern recognition algorithm, the
FrequencyHough transform, is well suited for the identification of continuous-waves
signals. It searches for straight lines in the portion of the frequency-time space
represented by the peakmap, returning an image of the frequency-spindown explored
space parameter, so-called FrequencyHough map, where each pixel has an integer
number count indicating the probability that a line with those parameters exists in
the analyzed peakmap. An example of a FrequencyHough map generated from a
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small peakmap coming from O2 data, with superimposed a straight line (to simulate
a fake signal) is shown in Fig. 2.4. A detailed discussion on the Hough transform
and its gravitational-wave implementation is given in Sect. 2.2.2.

Candidate selection

From the FrequencyHough map, the frequency-spindown bins with a high
statistic significance are selected in order to be more thoroughly analyzed. These
significant points of the parameter space are usually called candidates, or outliers.

The selection is done splitting the map in N frequency stripes and M spindown
belts. This will identify frequency-spindown rectangular portions of the map, where
the pixel with the maximum number count is selected and its amplitude and
parameter space coordinates are recorded, together with the so called critical ratio,
defined as (Astone et al., 2014)

CR =
n−m(n)

s(n)
. (2.16)

Here n is the FrequencyHough map number count of the candidate selected, m(n)
the median of the amplitudes in the given map portion and s(n) an estimator of
the dispersion parameters, analogue to the standard deviation for the average in
Gaussian distributions. It is defined as

s(n) =
1

C
m (|n| −m(n)) , (2.17)

where the normalization factor C = 0.6745 is defined in order to have s(n) = σn
if n follows a Gaussian distribution. The definition of CR with m(n) and s(n)
comes indeed from the fact that because of non-Gaussian disturbances in the
noise, we cannot use the average and standard deviation as estimators, introducing
errors (Astone et al., 2014). If the noise is purely Gaussian, the critical ratio
reduces to the distance from the average, in terms of sigma, of the pixel number
count in the considered frequency-spindown portion of the Hough map. Being non
perfectly Gaussian, we generalize the concept to have an estimation of the statistic
significance of the selected candidate.

To have a schematic idea of the process for candidate selection, an example is
given in Fig. 2.5 starting from the map from Fig. 2.4. The map is split in several
rectangles identified by the frequency and spindown intervals we have chosen. The
code goes through all rectangles, searching for the candidate with the maximum
amplitude, and storing it in a database of outliers. The N and M parameters are
chosen arbitrarly according to the amount of candidates we want to follow-up, for
a total of Ncand = N ×M candidates.

In a full sky analysis, a FrequencyHough map is computed for each Doppler
corrected peakmap along all the points in the sky grid, and the selected candidates
will be identified by their parameter space coordinates c =

(
λ, β, f, ḟ

)
, with λ, β

being the ecliptic coordinates. To reduce the number of candidates to be followed up,
a distance in the parameter-space is defined and candidates are clustered together
if they are close enough.
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Figure 2.5: Candidate selection scheme, which is shown for the example of Fig. 2.4. The
matrix is split in vertical and horizontal stripes along the two dimensions. Each slot is
delimited by the intervals in the chosen frequency and spindown values. When a slot is
processed, a candidate is selected and the algorithm goes to the next one.

In particular, an Euclid distance is defined as

d =
√
δ2
λ + δ2

β + δ2
f + δ2

ḟ
,

where the δX , with X = {λ, β, f, ḟ} are the distances in terms of bins of the two
candidates in the respective parameter-space dimension. When d is below a certain
fixed value, for example 4 (Astone et al., 2014), the two candidates are considered
to be coincident.

In general, in gravitational-wave searches, a network of detectors plays a crucial
role to filter the noise and increase the search sensitivity. It is important then to
find the coincidences between the sets of candidates coming from the detectors
of the network. Similarly to what it is done when clustering the candidates of a
single detector, supposing that noise disturbances can slightly alter the returned
parameters of a signal, a coincidence is registered when two candidates coming from
two detectors have a distance in the parameter space smaller than 3 bins (B. P.
Abbott et al., 2017a, 2019b; R. Abbott et al., 2022a).

To reduce the cost of the follow up search, only a portion of the candidates
are kept for the next steps of the analysis. A criterion is to set a threshold on the
CR, which is directly related to the search sensitivity (see Sect. 2.2.3). Another
way, which is adopted in the all sky analyses (B. P. Abbott et al., 2017a, 2019b;
R. Abbott et al., 2022a), is to rank the candidates from each dataset according to
their amplitude, and then the coincident candidate pairs for their parameters space
distance. The strongest and closest pair of candidates will have a better rank. For
each 0.1 Hz band of the frequency search interval, the first 8 candidates are selected
and followed up (B. P. Abbott et al., 2017a, 2019b; R. Abbott et al., 2022a).
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Follow up

The candidate follow-up consists in a more detailed analysis, following the same
procedure as of the FrequencyHough transform, but refining the resolution of the
parameter space around each selected outlier. The first step is the creation of a
new peakmap, ±3 bin wide around the frequency of the candidate and built with
already Doppler corrected FFTs with a 10 times longer coherence time (R. Abbott
et al., 2022a; Astone et al., 2014).

The peakmap is analyzed with a refined sky grid, which is ±3 bin wide around
the position of the candidate, where the residual Doppler effect is corrected. The
FrequencyHough transform is performed as before, with a new candidate selection.
For each of second-level candidates, another set of Doppler corrected FFTs is
generated. Then, another peakmap is created in a 0.2 Hz range around the frequency
outlier, and an histogram of the peaks is made by projecting the peakmap on the
frequency axis. The follow-up candidates are vetoed according to the following
criteria (R. Abbott et al., 2022a):

• considering the frequency of the candidate after removing the spindown effect
and the Doppler correction, the candidate is discarded if it falls in a known
instrumental disturbance or any of the hardware injections;

• if two coincident candidates, after the follow-up, exhibit a distance larger
than 6 bins in the refined parameter space, they are removed;

• let us consider the 0.2 Hz peak histogram defined above and let us split it
in sub-bands wide as ±2 of the original frequency bins. In each sub-band
the maximum values are identified and compared. If the sub-band where the
candidate stays has a maximum which is the first or second higher among all
the sub-bands, the candidate is kept, otherwise it is discarded

• let us consider again the above mentioned sub-bands of the 0.2 Hz peak
histogram from the two detectors. Computing the critical ratios in those
bands, if the CR of two coincident candidates, weighted by the detector
noise level, differs by more than a factor of 5 (R. Abbott et al., 2022a), then
candidates are discarded.

The surviving candidates undergo another iteration of the same procedure, but
increasing further the coherence time by a factor of ten.

2.2.1 The sky grid generation

The construction of the sky grid is crucial for the accuracy and efficiency of all-
sky searches. The rationale is that, due to the Earth Doppler effect, the frequency
shift causes an uncertainty in the sky position. As we will see in this section, the
proper construction of a grid depends on the frequency we analyze and on the
coherence time we use.

The size of the sky grid is important for the management of the computational
load of the FrequencyHough pipeline. For a typical analysis, the sky grid is computed
on the last frequency of each of 5 Hz large peakmaps (1 Hz if f < 128 Hz) spanning
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Figure 2.6: Number of sky points of the grid generated for the Doppler correction step.
The frequency bands are obtained splitting the full search frequency range in bins with
1 Hz width for f < 128 Hz and with a width of 5 Hz for f > 128 Hz. The grid is always
computed for the maximum frequency of the bin; the Tcoh durations are the same shown
in Tab. 2.2.

the search frequency range, and the number of sky points can go from thousands
to hundreds of thousands points (Astone et al., 2014; La Rosa et al., 2021). In
Fig. 2.6 we plot the number of sky points needed versus the maximum frequency of
the analyzed peakmap. The four different datasets, with different Tcoh, are shown
separately with different colors. In the plot we also indicate, for each dataset, the
total integrated number of points we need to process to complete the analysis of
their respective frequency range. The quantity has been computed summing the
size of the sky grids, generated for each sky map, along the full dataset.

By construction the analysis runs independently through all the sky points
generated from a given peakmap. The deploy of the search over this wide parameter
space represents the biggest technical challenge for this all-sky analysis. From one
side, it is important to minimize the number of sky coordinates we have to inspect
singularly, that is choosing the coarser sky resolution we can. On the other side we
cannot allow a sky grid so coarse that could produce a miscorrection of the Doppler
effect, causing a significant loss in sensitivity.

In fact, if the grid in the sky is too coarse, when we select a point of the grid,
the performed Doppler correction will not be enough for a signal staying on the
edge of the area defined by the selected point: in the corrected peakmap, it will not
draw the expected straight line, but it will be still curved. On the other hand, if
we refine the grid too much, we significantly increase the computation time needed
to cover all the sky and, at the same time, we will have multiple candidates from
different sky positions.

The formula for the natural sky grid, in terms of heliocentric ecliptic coordinates
latitude β and longitude λ, is derived in the following way (Astone et al., 2014):

• considering two sources emitting at the same frequency f0, with same β and
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Figure 2.7: Example of a sky grid generated with Tcoh = 4096 s and f = 129 Hz (blue
dots). The red dots show a squared grid generated around a random position in the sky
to simulate an outlier, with few degrees as length side, with ND = 56 (Eq. 2.20). The
plot in the right side is a zoom on the outlier grid.

a small separation in longitude δλ, the angular separation of the two signals
translates in the detector in motion as a time delay ∆t ≈ δλ/ωorb, with ωorb
the Earth orbital angular speed4.

• The maximum Doppler shift the two signals can have is

δfmax =
f0ωorbRorbcosβ

c
δλ, (2.18)

where Rorb is the Earth orbit radius.

• Rearranging the previous equation in terms of δλ, and writing δf = 1/Tcoh,
the angular resolution along λ will be

δλ =
c

Tcohf0ωorbRorbcosβ
=

1

NDcosβ
, (2.19)

where the so-called Doppler number ND has been defined as (Astone et al.,
2014)

ND := f0Tcohωorb
Rorb

c
. (2.20)

• Following the same reasoning for two sources with this time same λ, but
different β, the angular resolution along the latitude will be (Astone et al.,
2014)

δβ =
1

NDsinβ
. (2.21)

It is important to remark that, contrary to what happens for other sky tiling,
such as the so-called HEALpix (Gorski et al., 2005), this grid is not uniform. As
it is shown in Eqs. 2.19 and 2.21, the distance between two points along both
directions depends on the latitude.

4For the sake of simplicity we are neglecting the Earth rotation.
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Figure 2.8: Example of a Hough map in its original implementation, having as input a
picture with two straight tracks with different parameters, and as the output the Hough
map showing their values in the parameter space.

For an all-sky analysis the grid can be computed covering all the directions,
starting from three points: the poles (±π/2, λ) and a point on the equator, e.g.
(0, 0). All other points follow using the distances given by Eqs. 2.19 and 2.21.
Alternatively, as it is done for the follow up analysis of selected outliers, a grid
can be built as a rectangle around a given sky point within a defined distance (see
Figure. 2.7 for an example).

2.2.2 The FrequencyHough transform

The FrequencyHough transform is an implementation of the original Hough
transform pattern recognition algorithm (Hough, 1962). The method has been
conceived for the study of pictures of subatomic particle tracks in bubble chambers,
and it was based on searching for straight lines in portions of the pictures small
enough to have a curved track split, with good approximation, in line segments.

Considering as input an image where the line is formed by a series of co-linear
black points on a white background, the process of the Hough transform consists
in the definition of another image, called the Hough map, where the single black
points with coordinates (x, y) are drawn as straight lines, whose slope and intercept
are the input points coordinates. If we have a sequence of points forming a straight
track with equation y = mx + q, they will be represented as a series of straight
lines with varying intercept and slope. By simple Euclid geometry considerations,
they will form a family of intersecting lines. The coordinates of the incidence point
will be the values of the parameters (m, q) of the original line.

We can identify then the Hough transform space as the parameter space and
the input one as the coordinates space; see Figure 2.8 for an example.

Even though the original version was identifying linear patterns in a 2D image,
it is possible to generalize the Hough transform with any N -dimensional manifold
as input space and an M -dimensional parameter space as output, searching for any
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kind of curve with a set of M parameters (Ballard, 1981; Duda et al., 1972).
In the real applications, we always work with digitized images, with discrete

coordinates and parameter space having resolutions independent to each other.
The Hough map will be then a 2D histogram, where each line falls in a series of
pixels. When the lines cross the same pixel, that pixel will record how many of
them entered in that parameter space region. The number count amplitude in the
map will give the significance of a portion of the parameter space: keeping the
example of the pictures of black tracks on a white background, if in the input image
there are many colinear pixels on 1, many lines in the Hough map will intersect
in the same parameter space pixel, giving a higher number count. The Hough
transform in general works also with input images whose pixels do not have only
binary values, but also grey scales. The degree of grey, between 0 and 1 represents
the weight of that peak when it will be transformed. This means that a peak in
the input space, instead of being directly transformed as a straight line of +1 in
the Hough map, will undergo to a weighted transform, returning values between 0
and 1 according to the grey scale of the peak.

The implementation of the Hough transform for continuous gravitational-waves
searches, the FrequencyHough, starts from the Doppler corrected peakmap, as we
said in Sect. 2.2. This will be the input space of the transform: the frequency-
time plane of the selected peaks. The output parameter space will be as well
2-dimensional: the frequency time-law of the emitting neutron star is approximated
at first order as a straight line with equation

f = f0 + ḟ(t− t0), (2.22)

where the reference frequency f0 = f(t = t0) and the first frequency derivative ḟ ,
the spindown, are the parameters; t0 is an arbitrary reference time that for the sake
of simplicity will be set to 0 from now on.

Similarly to the original implementation, the FrequencyHough transforms each
point in the peakmap with coordinates (t, f) in a straight line in the (f0, ḟ) parameter
space, following the relation (Antonucci et al., 2008)

ḟ =
1

t
(f0 − f) . (2.23)

Since we are working with discrete quantities, a point in the peakmap will cover
a frequency range given by ∆f = 1/Tcoh, and hence it will be naturally mapped by
the Hough transform as a stripe between two parallel straight lines:

ḟ± =
1

t
(f0 − f ±∆f/2), (2.24)

keeping the resolution in frequency naturally given by the FFT we used to build
the peakmap.

The precision on the parameters we want to recover can be increased enhancing
the resolution of the parameter space, thus increasing the size of the Hough map,
at the price of a bigger memory and computation load. For example about the
frequencies, the resolution of the Hough map for the f0 parameter is enhanced by
a factor εf = 10 with respect to the natural frequency resolution ∆f = 1/Tcoh:
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∆f0 = ∆f/εf . With this choice the signal pixel amplitude is improved by 8% (An-
tonucci et al., 2008), thanks to the fact that, with a higher resolution the signal
is better localized, instead of being averaged on a wider range by the effect of
the discretization. For the spindown, the natural resolution is ∆ḟ = ∆f/Tobs,
where Tobs is the full observation time, and increasing it does not bring a significant
improvement in precision and sensitivity. Especially with the enhancement in
the frequency resolution, a differential method to implement the FrequencyHough
transform has been developed (Antonucci et al., 2008), which in the latest versions
of the algorithm has been updated to run as most as possible in parallel (See
Sect. 2.3 for more details and La Rosa et al., 2021). The process can be summarized
as follows:

• the map is created as a matrix with size given by the frequency range of the
peakmap, the range of spindown we want to inspect and the resolutions ∆f0

and ∆ḟ (typically the size is on the order of 105 × 102 bins, for a memory
occupation between 7GB to 0.5GB, depending on the frequency range
analyzed 5);

• for each spindown bin, the values of the matrix elements corresponding to the
relation f0 = f−∆f/2−tḟ (Antonucci et al., 2008) are found and incremented
by 1. Using the set of elements raised by one, the elements satisfying the
relation f0 = f + ∆f/2− tḟ are decremented by 1. This is called differential
map and it is the core of the FrequencyHough map computation. At this
point each row of the map will be a series of positive and negative integers
coming from the superimposition of the left (+1) and right (-1) edges of the
stripes defined above;

• to have the final map, each row of the matrix is, in parallel, cumulatively
integrated along the frequencies with efficient vectorial functions.

An example of FrequencyHough transform is shown in Figure 2.4, where a
portion of a peakmap from the O2 run data has been analyzed with a superimposed
straight line to simulate a signal.

2.2.3 Search sensitivity

The estimation of the sensitivity of the FrequencyHough pipeline comes from
the two steps of the analysis where data are selected or rejected on the basis of a
threshold: the peak amplitude threshold θ chosen to build the peakmap, and the
CR threshold on the candidates selected from the Hough map. The choice on both
thresholds is done looking for the best trade-off between the affordability of the
search from the computational point of view, the increase of false-alarm rate and,
most important, the loss in sensitivity.

5For higher frequencies, shorter FFTs are used, and hence the resolution both in frequency
and spindown is larger, bringing to smaller Hough maps for the same parameter space.
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Figure 2.9: Plot from Astone et al., 2014 showing the behavior of Φ (Eq. 2.29) versus
θ, for various values of spectral amplitude λ. The red dashed lines are computed for the
simple above threshold peaks selection, the blue continuous ones considering also the
local maxima condition. The plot shows how the difference between the two conditions in
terms of expected CR is faint, granting a higher robustness of the analysis and a reduced
computational load with a small sensitivity loss. Moreover, it shows how the choice of
θ = 2.5, slightly after the maximum, does not cause a strong reduction in sensitivity in
the expected situation where the spectral amplitudes are small.

Choice of θ

In the hypothesis of only random Gaussian noise from the data, the Hough map
pixel amplitude follows a binomial probability distribution, with average number
count 〈n〉 = Np0 and variance σ2

n = Np0(1− p0), where N is the number of FFTs
used to create the peakmap. The probability p0, defined as the probability to have a
local maximum above the threshold θ due to the noise can be expressed by (Astone
et al., 2014):

p0 = e−θ − e−2θ +
1

3
e−3θ. (2.25)

Following the definition of critical ratio given in Eq. 2.16, in this case it can be
written as

CR =
n−Np0√
Np0(1− p0)

. (2.26)

Let us define then the measured spectral amplitude of a signal, in a FFT with
coherence time Tcoh, as

λ =
4

Tcoh
· |H(f)|2

Sn(f)
, (2.27)

with H(f) the Fourier transform of the segment and Sn(f) the detector noise
spectral density. Lastly, the probability to select a signal peak with spectral
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amplitude λ is (Astone et al., 2014):

pλ ≈ p0 +
λ

2
θ
(
e−θ − e−2θ + e−3θ

)
. (2.28)

The choice of the best value of θ should maximize the expectation value of CR,
which we will write as CR, when a signal with spectral amplitude λ is present
(Astone et al., 2014):

CR(θ, λ) =
N(pλ − p0)√
Np0(1− p0)

=
√
NΦ(θ, λ). (2.29)

Computing and plotting the value of the function Φ for various values of λ
between 0.1 and 0.6, in function of θ (see Fig. 2.9 from Astone et al., 2014), we
can see that for low spectral amplitudes, the expected CR changes according to
θ ∈ [1, 3], and that θ = 2.5 is a good value for the chosen threshold. Note that this
threshold is slightly higher than the maxima of the function Φ. This causes a heavy
peaks number reduction in the peakmap, reducing the computational cost of the
Hough transform, with a negligible loss in sensitivity (∼ 1%) (Astone et al., 2014).

It is important also to remind that we are selecting only the local maxima of the
peaks in each FFT, instead of all the ones above the threshold. This causes a further
sensitivity loss (∼ 5%) with the advantage of a ∼ 9% computational time reduction
and, most importantly, gaining an increased robustness against disturbances, which
could generate several peaks, thus affecting many neighbor frequency bins.

Choice of CRthr

The second parameter that affects in a significant way the sensitivity of the
search, is the threshold on the CR of the candidates we want to keep for the
follow-up analysis, from now on indicated as CRthr.

Typically, the number values of pixels in the FrequencyHough maps, in an
analysis spanning the time scale of an observing run with duration 9-12 months, is
≥ 102. Then, we can use the Gaussian approximation to the binomial distribution
to express the probability to have the amplitude n in a given pixel:

Pθ,λ(n) =
1√

2πσ2
e

(n−µ)2

2σ2 , (2.30)

with µ = Np, σ2 = Np(1− p) and where p = p0 in the only noise assumption (see
Eq. 2.25) and p = pλ in presence of a signal (Eq. 2.28).

Defining nthr as the threshold on the number count that would be necessary to
select a candidate, it can be shown that the false alarm probability in the no-signal
hypothesis can be expressed as a function solely of CRthr (Astone et al., 2014),

Pfa(nthr) :=

∫ ∞
nthr

Pθ,0(n)dn =

=
1

2
erfc

(
nthr −Np0√
2Np0(1− p0)

)

=
1

2
erfc

(
CRthr√

2

)
,

(2.31)
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where erfc is the complementary error function. This equation shows also that
candidate selection condition on the Hough amplitude translates to a condition
on the CR: being N and p0 fixed parameters, the maximum n in a portion of the
FrequencyHough map will be also the maximum CR.

Then, as the candidates are selected wuth the highest CR in Ncand portions of
the FrequencyHough map, in the no-signal hypothesis we have Pfa = Ncand/Ntot. In
this case, Ncand is the number of selected candidates, while Ntot is the total number
of points in the search parameter space. With this consideration, we can then write,
inverting Eq. 2.31:

CRthr =
√

2 erfc−1(2Pfa) =
√

2 erfc−1

(
2
Ncand

Ntot

)
, (2.32)

and we can choose arbitrarily a CRthr to have a certain level of false alarm probabil-
ity, considering the availability of computing resources and time for the follow-up.

Sensitivity and upper limits

Let us consider a confidence level Γ. We can define as search sensitivity the
minimum signal amplitude that would produce a candidate in a fraction ≥ Γ of a
statistical ensemble of the experiment. As we will see, the sensitivity depends only
on the thresholds chosen to contain the computational cost of the search.

Let us define the probability to select a candidate with a count n > nthr, when
a given spectral amplitude λ from a signal is present

Pλ,n>nthr =

∫ ∞
nthr

Pθ,λ(n)dn, (2.33)

where the probability density function in the integrand is given by Eq. 2.30. The
value of the sensitivity is given by imposing

Pλ,n>nthr =

∫ ∞
nthr

Pθ,λ(n)dn =

=
1

2
erfc

(
nthr −Npλ√
2Npλ(1− pλ)

)
= Γ,

(2.34)

where pλ is given by Eq. 2.28.
Solving the equation in the small signal approximation, the minimum detectable

strain amplitude, given the detector spectral power Sn(f), is (Astone et al., 2014)

h0min ≈
4.02

N1/4θ1/2

√
Sn(f)

Tcoh

(
p0(1− p0)

p2
1

) 1
4
√
CRthr −

√
2 erfc−1(2Γ), (2.35)

where p1 := e−θ − 2e−2θ + e−3θ and N = Tobs/Tcoh is again the number of FFTs
used for the analysis. This value gives an estimation of the signal amplitude the
search is able to detect.

For a 1 year long observational run, using Γ = 0.95, θ = 2.5, Tcoh = 4096 (used
for all-sky analyses in the [128 − 512] Hz frequency range) and

√
Sn ∼ 10−23, as
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an order of magnitude value for the sensitivity curves for O3 in this region (see
Fig. 1.13 in Sec. 1.4), the latter equation becomes

h0min ∼ 8× 10−26
√
CRthr + 1.645. (2.36)

To complete the information on the minimum detectable h0, for the O3 search,
CRthr has been chosen equal to 5 (R. Abbott et al., 2022a), returning h0min ∼
1.5× 10−25 in the highest sensitive frequency region.

For the O3 all sky search for isolated neutron stars, the definition of used
upper limit has been Eq. 2.35 with, in place of CRthr, the maximum CR retrieved
from the candidates in each 1 Hz frequency band has been considered. For each
band, the final upper limit is the worse between those computed separately for
the LIGO-Hanford and LIGO-Livingston detectors (R. Abbott et al., 2022a)6. In
the all sky analyses for previous runs (B. P. Abbott et al., 2017a, 2019b), the
upper limits where computed directly through injections of simulated signals. The
method explained above produces more conservative upper limits with a far lower
computational effort (R. Abbott et al., 2022a).

2.3 The General Purpose GPU (GPGPU)
computing project

In recent years, the so-called Moore’s law on the number of transistors in
integrated circuits started to show its limits. From one side, the physical limits are
on the way to become too expensive to overcome, on the other side the computing
paradigm has changed to face the need for higher and higher computational power
in many fields, from science to industry, to many everyday life applications.

One of these fields is the videogame industry. Since the ’70s of the last century,
dedicated computer hardwares were developed to be able to draw 2-dimensional
scenes at a high frame rate. In the ’90s, with the birth of 3D-graphics it became
mandatory to demand all the rendering of 3-dimensional scenes to devices with a
specific architecture: the Graphic Processing Units (GPU), structured as integrated
circuits on a board connected to dedicated memory, with various interfaces and
ports.

They have been created for the development of videogames, to solve the comput-
ing problem consisting on the management of different pixels on a screen, deciding
what they should show to form images, taking into account the user interaction,
the neighbor pixels and the physical parameters of the depicted image. Everything
has to be done in real time, at the typical screen frame rate of 60 Hz. To be able
to fulfill these functions, a high number of processors is necessary, which can take
care independently of different tasks and, using dedicated memories, communicate
each other in a very efficient way. This is the basic description of a GPU: a device
created and developed to do efficiently computations with an extremely high degree
of parallelism.

6Being the Virgo detector less sensitive (see Fig. 1.13), it has not been considered for the upper
limit computation, as the data from it were used for validation purposes.
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The ever-increasing demand of realistic graphics has brought to have a very
fast technology evolution in the last 20 years, with, at present day, GPUs having
from tens to hundreds of cores and memory capacity reaching fastly order of
gigabytes. This caused an explosion of the processing power in terms of floating
point operations per seconds (see Fig. 2.10), with videogames able to reproduce
on screen even very detailed physical simulations. It became natural then the idea
to apply the use of GPUs in the most different fields, scientific research included,
giving birth to the General Purpose GPU (GPGPU) computing.

A typical GPU has a number of cores far higher than any multi-core CPU
system, but with single core clock rate far lower than the CPU ones. The high
core number makes GPUs far more efficient in parallel computing, while CPUs are
still the best option to perform sequential calculations. A good approach on many
problems is then to split the tasks of a code, demanding serialized operations to
the CPU and reserve the GPU only for well parallelizable problems (see Fig. 2.11).

The computing paradigm that exploits the features of the GPUs is called stream
processing or data flow. The programs are modeled as graphs of operations (in
general, not dependent to each other) where the data flow through. The key concept
of this paradigm is the vectorial approach. The data are organized as N -dimensional
arrays reproducing effectively the algebra of tensors, and the operations transform
the data applying an operation over all the elements of the tensor. Operations and
data are distributed over the core and memory topology of the GPU by specific
functions.

The importance of the vectorial approach is crucial first of all from the logic
point of view: we want to use the GPU on a well parallelizable problem, the most
efficient approach then is to have an array of data and apply the same instruction
on multiple data at once. Second of all, the devices we use are built to exploit this
paradigm: the GPU hardware is optimized to work with an uniform stream of data
and operations that are spread in parallel over many cores, introducing sequential
instruction will result in sub-optimal bottlenecks.

Another key element is the memory management. Every memory transfer
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Figure 2.10: Trend of GPU and CPU FLOPS capability in the last fifteen years, whose
values are taking from specifications publicly released by manufacturers.
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Figure 2.11: Scheme of joined CPU-GPU computation: the sequential part of a program
is more efficiently when it is managed by the CPU, while the GPU manages the massive
parallel computations (image from nvidia.com).

introduces overhead, but while the bandwidth within the GPU is very large and the
transfers are very fast and efficient, communicating with the storage or the system
memory is highly inefficient. It is crucial then to load all the data possible at once,
elaborate them and save the result at the very end of the process. If the data is
much larger than the available memory, normally they are loaded in batches and
the results are reconstructed after. Then it is worth to remark that, even though
the raw power of the chipset is important, in data science the memory capacity can
be decisive to define the efficiency of a code.

2.3.1 GPGPU with Tensorflow

Nowadays, thanks to the very low ratio between cost and computational power
of the modern devices, the use of GPU for data science is an established standard,
with devices developed specifically for the purpose, reaching thousands of cores
and tens of GB of memory. Aside the hardware, also the software tools to develop
codes using GPUs became more and more efficient and accessible, with the creation
of dedicated libraries for the C and C++ programming languages. The two most
important of them are CUDA (The NVIDIA Corporation, 2021) and OpenCL (The
Khronos Group, 2021).

The low-level characteristics of C and C++ makes them among the best choices
to optimize the efficiency of the developed codes, but on the other hand they require
a time cost for the development, making the approach to GPU programming very
steep. Even though the libraries help the task of the GPU resources management,
it is still necessary some fine tuning that can result to be troublesome in the
development process. To solve this issue, in 2015 Google released TensorFlow (The
TensorFlow Authors, 2021) under the Apache 2.0 open source license: a new
high-level framework for GPGPU programming, based on Python, but written in
C++ using the CUDA libraries. TensorFlow was developed originally for machine
learning, but as it will be shown in this Thesis, it is complete and general enough
to be used with various purposes.

The APIs of TensorFlow consist in a set of CUDA-C++ functions covering a
wide range of possible operations (tensorial products, convolutions, etc). With an
approach and a sintax similar to the Scipy-Numpy libraries (Scipy developers, 2021),

http://www.nvidia.com/object/GPU_Computing.html
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1 import tensorflow as tf
2 N = 100
3

4 # Build a graph with:
5 # two matrices with random values;
6 matrix1 = tf.random_normal((N,N))
7 matrix2 = tf.random_normal((N,N))
8 # a matricial product between them.
9 product = tf.matmul(matr1, matr2)

10

11 # Launch the graph in a session,
12 sess = tf.Session()
13 # evaluate the tensor 'product'
14 sess.run(product)

Figure 2.12: Example TensorFlow code and its graph.

these functions can be called in a Python code, allowing an easier development
and using an overlay of functions that, being written in a low-level language, are
already well optimized.

Using the data-flow paradigm, a TensorFlow code builds a graph using tensors
which go through a series of operations. The operations are the nodes of the graph,
while the tensors, going from a node to another one, are the edges. Normally,
the graph is first built and after executed by a specific call. However, in the
recent versions 2.x, the so-called eager execution has been implemented to aid the
development of new codes: the nodes are executed at the same time as they are
added at the graph.

An example of a TensorFlow code, and the resulting graph, is shown in Fig. 2.12.
The code produces two matrices with random values and then computes the matrix
multiplication between them. It can represent a very useful benchmark to compare
the performance and cost of different CPUs and GPUs on this kind of tasks.

In Fig. 2.13 the example code and an equivalent script written with Numpy
have been executed, changing the parameter N (that is, the size of the generated
matrices) from 3000 to 14000. The computing time as a function of the number
of pixel is shown for the GPUs with TensorFlow using 32 and 64 bit data on a
NVIDIA Tesla V100 (a GPU for data centers with 16 GB of memory and 5120
cores The NVIDIA Corporation, 2022). For the CPU side, the Numpy code, using
64 bit data with multithreading enabled, has been ran on an Intel Xeon E5-2650
v4, with 24 execution threads and a maximum clock of 2.9 GHz. The difference of
more than one order of magnitude in the computing time for the 64 bit case shows
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how the use of GPUs (in particular of the data center kind) can significantly boost
the performances of numerical computations. The GPUs work natively on 32 bit
data, so if it is possible to work on single precision, the performance improvement
can be even larger.

To complete the picture, the same test has been ran on a set of different CPUs
and GPUs, comparing performances and cost of the devices (see Fig. 2.14). Keeping
in mind that the prices can vary significantly over time, the general trend that
results from the benchmark is that with GPUs, when the problems to solve can
be efficiently parallelized, is possible to run analyses one order of magnitude faster
than on multi-core CPUs, with a fairly reduced cost. Moreover, with CPUs the
performance on this kind of problems does not look strictly dependent on the
architecture and computing capability; on the GPU side, even if desktop devices
like the GTX series show similar execution times, the far larger memory availability
of the data center series, like the Tesla, is a key factor when a large amount data
has to be handled.

2.3.2 GPU FrequencyHough, details and performances

The GPU porting of the FrequencyHough algorithm and candidate selection (La
Rosa et al., 2021) has the purpose of the application of GPGPU methods on the
all-sky search for periodic gravitational waves from isolated neutron stars. The
original version of the algorithm has been written in Matlab (Mathworks, 2021)
and is based on the SNAG toolbox (Frasca et al., 2018), while the GPU-enabled
version has been developed in Python, using the TensorFlow APIs updated up to
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Figure 2.13: A benchmark based on the example code using two devices: an Intel Xeon
E5-2650 v4 CPU system with 12 2.90 GHz execution threads, and a NVIDIA Volta V100
with 5120 cores at 1500 MHz. The test is based on the generation of two random 2-rank
arrays and a matrix multiplication between them. The green and orange dots show the
benchmark conducted, respectively, with 64 and 32 bit data with TensorFlow, the blue
ones come from a test with 64 bit data with Numpy. The test with the CPUs has been
performed keeping the multithreading enabled as by default for Numpy.
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14K$

Figure 2.14: A set of tests using the example code on various different GPUs (left plot)
and CPUs (right plot). For each device the benchmark of Fig. 2.13 has been performed
and the best value of execution time, divided by the number of pixels has been registered.
This has been done to take into account the possible different behavior between different
systems and report a comparable quantity on the best performance reached by each used
device. Aside to this, in the same frame, the market price at the time of writing is shown
to give a general idea of the performance achievable in relation to the monetary cost.

the version 1.13.
The data used come from .mat files called input files containing Matlab struc-

tures with the peakmaps and various search parameters (observation time, frequency
resolution, detector velocity for the Doppler correction, etc), coming from the pre-
vious steps of the search. The target of the project was to apply the new version of
the Hough transform on all sky searches over the full detector sensitivity bandwidth,
in order to produce and store the candidates for the follow-up analyses. Because
the difficult integration of TensorFlow with Matlab, during the development of the
new version, it resulted more efficient to write a code that, once loaded a peakmap,
took care of all the steps of the analysis until the candidate selection step: sky
grid generation and, for each sky point, Doppler correction, peakmap weighting,
FrequencyHough transform and candidate selection.

The sky grid generation and peakmap manipulation parts are an exact trans-
position from the original Matlab code, using Python with Scipy libraries. The
generation and analysis of the FrequencyHough map to produce the candidates
has been implemented to run on GPU, being the core of the pipeline and the most
computationally demanding part.

The original version was using a mix of vectorial operations and for loops,
therefore, to improve the efficiency on GPUs, it was necessary first to fully vectorize
the code7.

As said in Sect. 2.2.2, the FrequencyHough map is defined by the relation

fH = f − ḟ · t. (2.37)
7Perform vectorial operations means to apply an operation on a complete array at once.

Normally, in high level programming languages, to achieve this we need to use built-in functions
optimized for this purpose. In this treatment, the term vectorize is used to mean that the
optimization process goes through writing a code that uses only vectorial built-in functions of the
framework used, in this case TensorFlow.
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For each value of the spindown ḟ , a row of the Hough map is defined as
the histogram of the values of the above relation (which in general are floating
point values with single or double precision), binned in a number of columns
Ncol = ∆f/δf · εf , where ∆f is the frequency width of the peakmap, δf = 1/Tcoh
the natural frequency resolution and εf the enhancement factor mentioned in section
2.2.2, typically set to 10.

In a typical all-sky search this implies maps with a number of columns from
∼ 2× 105 to ∼ 5× 104, depending on the Tcoh used. With the natural choice on the
spindown resolution, the number of rows of the map for 9 months of observation
goes from ∼ 1000 to ∼ 250, while it raises up to ∼ 1400 − 350 for a 12 months
long run like it was for O3. This implies maps that can reach 9 GB of memory
occupation at single precision.

With these sizes, it was impossible to perform a full vectorization on both
frequencies and spindown, which would have required a factor of 103 more of GPU
memory. The solution have been to write a vectorized function of a single Hough
map row, and then to use the built-in function map_fn, that maps a defined function
over the values of a tensor, like in the pseudo-code shown below:

1 # Define a function that computes
2 # a single row of the matrix
3 def makeRow(i):
4 """
5 a series of instructions
6 """
7 return row
8

9 # The function is executed over an array of arguments
10 # (in this case, the range of indices between 0
11 # and the total number of spindown bins)
12 freqHoughMap = map_fn(makeRow, range(0,nSpindownBins)).

The map_fn function works similarly to the built-in Python map function, but it
is able to distribute the calculation on the GPU topology automatically, applying
an effective vectorization on a series of instructions having the logical shape of a for
loop. This approach proved to be effective, as we will see in Sect. 2.3.2. An example
of a FrequencyHough map produced for the analysis of a hardware injection on O2
data is shown in Fig. 2.15: the effect of the hardware simulated signal is evident in
the characteristic double-cone shape of pixels with a higher number count. From
the aliasing of the image it is possible to see how the rows of the map, computed
independently, form the overall Hough map.

The candidate selection has been implemented in a very similar way: the
candidates are selected over several frequency and spindown intervals, as explained
in Sect. 2.2. Instead of going through the spindown intervals sequentially, with
TensorFlow we can naturally parallelize the selection over them. Fixed the spindown
portion, a function selects vectorially the candidates over the frequency sub-bands
using the same criteria defined by the original Matlab code. The selection over the
spindown intervals is done again with the use of the map_fn function. In this way,
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since they run in parallel, the increase of computation time is negligible when we
increase the number of spindown intervals and we can select more candidates over
different spindowns, thus improving the search sensitivity.

The code execution then has been structured in this way:

• the peakmap, defined as a sparse matrix of the frequency-time coordinate
array of the selected peaks, is loaded in the system memory and the sky grid
is generated;

• a single sky point is selected, the peakmap frequencies are Doppler corrected
and the weights are computed;

• the TensorFlow graph of the FrequencyHough map computation and candidate
selection is built, with a placeholder for the input data;

• the graph is executed feeding the data into the placeholder. In this way
there is only one memory transfer from the system to the GPU before the
computation starts, and the overheads are reduced;

• the selected candidates from the map are saved;

• the same process is repeated for each sky point until the full grid has been
covered with the loaded peakmap;

• once the peakmap is processed over the sky, another peakmap is loaded, a
new sky grid is defined and the process is repeated for each peakmap of the
analyzed frequency bandwidth.

Performances

The TensorFlow GPGPU approach on the FrequencyHough turned out to be
very successful, with a speed-up of the analysis that can reach more than an order
of magnitude with respect to the standard code, with same input and parameter
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Figure 2.15: The GPU FrequencyHough algorithm applied to analyze a hardware injec-
tion (so-called pulsar 8) in O2 LIGO Hanford data, with parameters: f0 = 190.6373 Hz,
ḟ0 = −8.65× 10−9 Hz/s and ecliptic coordinates λ = 351.39◦, β = −33.42◦.
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Figure 2.16: Detailed comparison between the estimated running time of the GPU-
(left plot) and the CPU- (right plot) based FrequencyHough codes. The grey part of the
benchmark is executed only once per job and contributes negligibly to the overall cost,
while the colored parts of the bars constitute one iteration over the sky positions and
are in the main loop. The TensorFlow involvement is split into two pieces: the graph
building and variables initialization (orange) and the graph execution (red). The GPU
code, after the graph creation, computes the FrequencyHough transform and the candidate
selection at once, so it is not possible to split the two steps without the introduction of an
overhead, caused by the fact that the graph is generated and run in two steps. It is to be
remarked that the CPU code can run only on a single thread. Hence, in the right plot the
performance are shown in terms of computing times using a single CPU core.

space. An estimation of the running time of the GPU code compared to the CPU
one, running on single core, is shown in Fig. 2.16.

In the bar plots the execution time is shown for the four databases with different
Tcoh used in the analysis (see Sect. 2.2), with the subsequent analysis steps shown
from the bottom to the top with different colors. The devices used are an Intel
Xeon E5-2650 v4 CPU with 24 2.20 GHz execution threads and a NVIDIA Tesla
V100 with 5120 cores at 1500 MHz and 16 GB of memory. The peakmaps used
for the benchmarks were coming from the O3 analysis, that is with an observation
time of Tobs ∼ 12 months. The one with Tcoh = 8192 s covers a frequency band of
1 Hz while the others are 5 Hz large. The spindown range was −10−9 - 10−10 Hz/s,
with the natural resolution (explained in Sect. 2.2.2) eqaul to δḟ = δf/Tobs, i.e., the
number of spindown bins for the four tests were respectively 566, 1284, 644, 322.

It is to remark that the comparison shown has been done between the new
version running on a full GPU and the single core execution of the CPU code. The
difference of device used prevents a detailed comparison, but it is evident how the
FrequencyHough map computation becomes, from being computationally intensive
on the CPU version, analogous to the computation of the peakmap weighting and
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Figure 2.17: GPU tests for the FrequencyHough algorithm on a Tesla k20 (2496 cores at
706 MHz and 5 GB of memory) changing some key parameters: the size of the input (time
interval–frequency range of the peakmap) and the size of the parameter space (number
of spindown bins). The plots show the increasing efficiency of the GPU parallelism with
a higher load on the memory and cores of the device. Left: computation time as a
function of the frequency band covered by the peakmap. The measured computation
times (dotted lines) are compared to those we would obtain by serializing the GPU code
over 1 Hz peakmaps (dashed lines). The red plots show the test starting with a 9 months
long dataset. It can be seen how when the memory of the device is full, with a 20 Hz
large peakmap, the efficiency of the parallelization halves the computation time that we
would need for a separate analysis of 20 Hz large peakmaps. The blue plot is the same
comparison, but made with a peakmap covering only 1 month, with a 20% time gain.
Note that when the memory is full the Hough computation time is the same. Right:
computation time as function of the number of spindown steps of the Hough map, with
Tobs = 9 months and ∆f = 5Hz. Dotted and dashed lines have the same meaning as
before. The plot shows a 68% time reduction with respect to the serialized case, proving
that the vectorization with the TensorFlow map_fn function is successful.

Doppler correction, thanks to the GPU function, going from the > 90% to roughly
the 50% of the total execution time.

To provide more insight on the performance and behavior of the GPU code, in
Fig. 2.17 we show another set of benchmarks, performed varying either the input
data size, either the parameter space size, i.e., the size of the Hough map.

For the first case, the Hough maps are computed with peakmap covering either
1 month or 9 months of data, changing the frequency range gradually from 1 Hz to
the maximum allowed by the memory of the device used for the test (a Tesla k20
with 5 GB of memory), and keeping the same number of spindown bins. Then the
time of the first execution has been projected as a straight line multiplying it for
the increased size of the peakmap, to see the ratio of computing time between the
actual computation with a N Hz large peakmap and what would be if we ran the
FrequencyHough function on N small peakmaps, each large 1 Hz.

In this way we can have an idea on how the GPU parallelism gets more efficient
when we use properly the device, filling the most amount possible of memory and
cores. The result is that, for the 1 month case, the parallelism efficiency brings to
a 20% time gain when the memory of the GPU is completely filled, and for the 9
month one reaches almost the 50%, even though we can cover a smaller range of
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Figure 2.18: Plots showing the estimation on the time needed to complete the analysis
with O3 data on the GPUs available in the CINECA Marconi 100 cluster. Left plot: the
time in function of frequency needed to complete the analysis of a peakmap. Right plot:
the integrated computation time to complete a full dataset.

frequencies before going out of memory. Moreover, in the two cases, the maximum
computation time is the same, showing that the GPU occupancy is a key factor for
the efficiency of the computation.

In the second test a single 5 Hz - 9 months large peakmap is loaded and only the
number of spindown bins has been changed. In this way we can have information
on the efficiency improvement of the code when we expand the parameter space,
and also we can check if the pseudo-vectorization achieved using the map_fn
function works well. With the same procedure described above, we compare the
computation time increasing the number of spindown bins with the time of the first
computation multiplied linearly. The results show that the parallelism achieved
works very well, reaching a 68% increase in efficiency when the memory of the GPU
is completely filled, and showing that the parameters space of the Hough transform
can be expanded along the frequency derivative with a relatively low increase in
computation time.

The results shown for the spindown dimension of the parameter space does
not hold for the frequency dimension. As said in Sect. 2.2.2, the algorithm has an
integration step, intrinsically sequential by definition, that in the new algorithm
runs on the GPU. In this case, if we increase the resolution (that is, the number of
bins) along the frequencies we have a loss in efficiency rather than a gain.

The deploy of the pipeline for O3 production

The new code has been tested and reviewed in order to be used within the
LIGO-Virgo-KAGRA collaborations, showing that is able to produce the same set
of candidates of the original code.

After the review process, it has been used for the O3 analysis. The search has
been deployed on the CINECA Marconi 100 cluster (Cineca, 2021), providing 980
nodes with 4 NVIDIA Tesla V100 each.

A full set of benchmarks have been performed to have a precise estimation on
the amount of computation hours needed to complete the search on single GPU
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(we can call them GPU-hours as analogy to the core-hours quantity for the single
core computation on multi-core systems). In Fig. 2.18 the result of this survey
are shown as computation time in function of frequency, to have an idea on how
much time is needed to complete a single peakmap that is 5 Hz wide (1 Hz in the
range 10 - 128 Hz), and as integrated time in function of frequency to have the
information on the time needed to complete the analysis of a full dataset.

The final values are summarized in the table below:

Dataset (Tcoh) Time (×103 h)

8192 s 6.6 (∼ 9 months)
4096 s 28 (∼ 39 months)
2048 s 20 (∼ 28 months)
1024 s 31 (∼ 42 months)

The reason why the second band (Tcoh = 4096 s, 128 - 512 Hz) takes the same
time of the last one (Tcoh = 1024 s, 1024 - 2048 Hz), despite being much shorter,
is because the number of spindown bins was too high, increasing significantly the
computation time, bringing often the GPU out of memory and slowing down, if not
letting crash, the computation. Because of that, this band has been analyzed with
the original code on CPUs, together with the first one (Tcoh = 8192 s, 10 - 128 Hz),
being smaller and more affordable for the CPU computation.

As part of my project, I took care then of the analysis and candidate selection of
the peakmaps in the frequency range between 512 and 2048 Hz. In order to spread
the computation accross the cluster in a homogeneous manner, the computation
has been split in several jobs with the same duration (. 24h). Given an input file
containing the peakmap, a specific script was computing the expected computation
time given the input data and search parameters. In the job submission then it
was feeding the range of indexes of sky map that each single job had to process.
Each job was producing an output file with the candidates list and all the output
from the same input file were saved in the same folder.

Using approximatively the 25% of the resources of the cluster it was possible to
perform the analysis in the selected range in few days, covering the full sky and the
standard spindown range of −10−8 - 10−9 Hz/s. The results of the analysis have
been published in a collaboration paper (R. Abbott et al., 2022a).





Chapter 3

The continuous-wave analysis with
the radiometer method

As seen in the preceding chapters, the search for continuous waves from non-
axisymmetric neutron stars, especially when we do not have any information on the
source parameters, requires to span over a wide and fine-grained parameter space,
demanding high computational resources.

In the recent years, the search for a stochastic background of gravitational
waves with anisotropic distribution started to focus on point like sources, using the
radiometer method in a pixel-wise search over the sky. Similarly to what happens
with electromagnetic antennas, especially for radio and microwave frequencies, the
distance between two detectors can be exploited to reconstruct a source via its
phase mismatch, whose evolution depends on the source direction.

Thanks to the radiometer method, an unmodeled search can be performed over
the full frequency sensitivity band of the detector and over the full sky with cross-
correlation techniques. With a frequency resolution coarse enough, it is possible to
neglect all the frequency variations, i.e. the spin derivatives and the Earth Doppler
shift, keeping them confined in a single frequency bin.

In this way, narrowband maps of the sky can be built in a given frequency
range, showing, pixel by pixel and for each frequency bin, detection statistics and
SNR. This technique has been exploited in several searches (B. P. Abbott et al.,
2017b, 2019c; R. Abbott et al., 2021d, 2022c) to search for continuous waves from
non-axisymmetric rotating neutron stars.

Similarly to the FrequencyHough, presented in the preceding chapter, the
radiometer search selects outliers from portions of the parameter space which show
a high statistical significance. If they do not pass some verification steps, upper
limits on the gravitational-wave amplitude, in function of frequency, are produced;
otherwise, the statistical significance of the outliers is studied to deny or confirm a
detection.

So far an in-depth characterization of the method for the continuous-wave search
was missing as well as, very important, a dedicated follow-up procedure for the
outliers. In the framework of my PhD project, I have performed this study and
developed a pipeline to follow-up the radiometer all-sky candidates with an adapted
version of the FrequencyHough.

This chapter will start with the description of the radiometer method and the
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analyses performed for the search of continuous waves. Afterward, the characteriza-
tion study and the follow-up method that will be applied in future searches, will be
presented.

3.1 The stochastic background search
As mentioned in Sect. 1.3.3, a background of gravitational waves can be the

result of two classes of sources: cosmological processes happened in the earliest
stages of the Universe expansion; a coherent superposition of several unresolved
astrophysical sources.

To characterize the stochastic gravitational-wave background we use the frac-
tional energy density spectrum (Allen et al., 1999; Maggiore, 2000):

Ωgw(f) :=
8πG

3H2

dρgw
d log f

, (3.1)

where ρgw is the gravitational-wave energy density in function of frequency f , G
is the gravitational constant. The Hubble constant, H0, is usually written as
H = hhubble × 100 km s−1 Mpc−1, with the values of hhubble still widely uncertain
between 0.50 and 0.75 (Maggiore, 2000 and references therein; for more recent
results Aghanim et al., 2020; Denzel et al., 2021; Dietrich et al., 2020; Freedman,
2021).

Through this chapter we will focus on the searches for anisotropic stochastic
gravitational-wave background based on the radiometer method (B. P. Abbott
et al., 2017b, 2019c; R. Abbott et al., 2021d) and how it can be applied to point-like
sources, but first we will see how the detection statistics is built starting from an
isotropic distribution.

3.1.1 Isotropic optimal filter

The relation between Ωgw and the gravitational-wave spectral density Ph(f) is
given by the formula (Allen et al., 1999; Maggiore, 2000)

Ωgw(f) =
2π2

3H2
0

f 3Ph(f), (3.2)

where Ph(f) in the assumption of isotropic, unpolarized and stationary stochas-
tic background, is defined through the ensemble average of the signal Fourier
amplitudes (Allen et al., 1999; Maggiore, 2000):

〈h̃∗A(f, Ω̂)h̃A′(f
′, Ω̂′)〉 = δ(f − f ′) 1

4π
δ2(Ω̂, Ω̂′)

1

2
Ph(f). (3.3)

The index A = {+,×} in the formula stands for the two polarization states, Ω̂
and is a unit vector pointing at the celestial sphere, such that defining two angle
coordinates (φ, θ) we have δ2(Ω̂, Ω̂′) = δ(φ− φ′)δ(cosθ − cosθ′).

It is worth to notice that the definition in Eq. 3.3 follows the same concept of
the definition of the detector noise spectral density. The stochastic background
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signal, in fact, in a single detector appears indistinguishable from the noise. The
strategy to separate the signal contribution from the noise is to cross-correlate the
output of a pair of detectors.

It can be shown that the optimal filtering detection statistics can be written
as (Allen et al., 1999; S W Ballmer, 2006)

Y =

∫ +∞

−∞
df

∫ +∞

−∞
df ′δT (f − f ′)s̃∗1(f)Q̃(f ′)s̃2(f ′), (3.4)

where:

• s̃{1,2} are the Fourier transforms of the strain output time series from the two
detectors;

• δT (f − f ′) is a finite-time approximation of the Dirac delta function, where T
is the observation time;

• Q(f) is the two-detector optimal filter, defined as the function that maximizes
the SNR.

To define the optimal filter we need to express the SNR := 〈Y 〉/σY , where
〈Y 〉 and σ2

Y = 〈Y 2〉 − 〈Y 〉2 are the expectation value and the variance of the
cross-correlation statistics defined above. Reminding that s{1,2} = h{1,2}+n{1,2}, the
ensemble average in the hypothesis of a stationary gravitational-wave background
and stationary and uncorrelated noise in the two detectors, will be:

〈s̃∗1s̃2〉 = 〈h̃∗1h̃2〉+ 〈h̃∗1ñ2〉+ 〈ñ∗1h̃2〉+ 〈ñ∗1ñ2〉 ≈ 〈h̃∗1h̃2〉 (3.5)

The correlation terms of the signal with the noise from the detectors, 〈h̃∗1ñ2〉
and 〈ñ∗1h̃2〉, and the correlation between the two noise components, 〈ñ1ñ2〉, with a
long enough observation time are expected to be negligible, leaving only the signal
term 〈h̃1h̃2〉 (Allen et al., 1999).

Writing down the signal recorded by the detector i = {1, 2}, with antenna
pattern FA

i , as

h̃i(f) =
∑
A

∫
dΩ̂hA(f, Ω̂)e−i2πfΩ̂·xi/cFA

i (Ω̂), (3.6)

we can explicit the cross-correlation expectation value 〈Y 〉:

〈Y 〉 =

∫ +∞

−∞
df

∫ +∞

−∞
df ′δT (f − f ′)〈h̃∗1(f)h̃2(f ′)〉Q̃(f ′) =

=
T

10

∫ +∞

−∞
Ph(f)γiso(f)Q̃(f).

(3.7)

Here we have introduced the normalized isotropic overlap reduction function
γiso (Allen et al., 1999), which takes into account how the two detectors respond to
an incoming signal when combined and is defined as:

γiso :=
5

8π

∑
A

∫
dΩ̂FA

1 (Ω̂)FA
2 (Ω̂) (3.8)
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In the case of an isotropic background search we cannot define an orientation
between the baseline and the source, since the signal comes stochastically from all
the directions. We than operate an average over the sky, and with respect to a
situation with two coincident detectors, having a difference in orientation (hence
we have misaligned anntenna patterns F{1,2} (Allen et al., 1999)) and a spatial
separation ∆x = x1 − x2, produces a reduction in sensitivity. Being normalized,
the overlap function is limited between 0 and 1, expressing the fractional reduction
of sensitivity when the detectors are not colocated and coaligned (in that case,
γiso(f) = 1). Since it is a key element of the radiometer directional searches, and
for the moment we are introducing the optimal filter in the isotropic case, a detailed
discussion on the directional γ function is postponed to Sec. 3.1.3.

Having assumed that the noise from the detectors is much higher than the signal
contribution, remembering the definition of the ith detector one-sided noise power
spectral density (Eq. 2.5)

〈ñ∗i (f)ñi(f
′)〉 =

1

2
δ(f − f ′)Pi(f), (3.9)

we can write the variance of the detection statistics as
σ2
Y = 〈Y 2〉 − 〈Y 〉2 ≈ 〈Y 2〉 ≈

≈ T

4

∫ +∞

−∞
P1(f)P2(f)|Q̃(f)|2df.

(3.10)

Defining the inner product

(A,B) :=

∫ +∞

−∞
A∗(f)B(f)P1(f)P2(f)df, (3.11)

we can write the squared SNR as

SNR2 =
〈Y 〉2

σ2
Y

≈ T

(
Q̃, γiso(f)Ph(f)

P1(f)P2(f)

)
(
Q̃, Q̃

) . (3.12)

The inner product of Eq. 3.11 behaves like a scalar product of vectors in a three-
dimensional Euclidean space (Allen et al., 1999). Maximizing SNR2 is analogous
to find the maximum of the ratio (Q ·A)2/(Q ·Q) for a generic vector A. This
happens when Q and A are parallel, and in our case it implies that the SNR is
maximum when the filter function Q̃(f) is

Q̃(f) = λ
γiso(f)Ph(f)

P1(f)P2(f)
, (3.13)

with Ph representing our spectral model of the isotropic stochastic background, and
with λ a normalization constant.

Due to the unavoidable long-term non stationarity of the detector, the data
time series is split in segments that, in good approximation, satisfy the stationary
noise hypothesis. On each segment j the detection statistics Yj and variance σ2

Yj

are computed. The semicoherent cross-correlation estimator that maximizes the
SNR is (S W Ballmer, 2006):

Ytot =
1

σ2
tot

∑
j

Yj
σ2
Yj

;
1

σ2
tot

=
∑
j

1

σ2
Yj

. (3.14)
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Figure 3.1: Scheme of the radiometer between two detectors from (Mitra et al., 2008).
The plane wavefront coming from the direction Ω̂ crosses the two detectors of a baseline
defined by the vector ∆x(t) at different phases. Through the phase difference, with the
radiometry technique, it is possible to reconstruct the source direction by the combination
of the data streams from the two antennas.

3.1.2 The radiometer method

The radiometer search is a generalization of the isotropic cross-correlation
optimal filter to search for an anisotropic distribution of stochastic gravitational-
wave background. The concept of radiometry is to exploit the baseline distance
∆x between two antennas to reconstruct the phase difference of an incoming signal
from a given sky position (see Fig. 3.1). Delaying the data by the signal travel
time between the detectors allows to effectively point the baseline toward a specific
sky direction and extract the signal with the highest possible SNR via the use of a
proper filter.

Instead of an isotropic distribution, we are considering the signal from a source
having a certain angular power spectrum distribution over the sky PA(Ω̂, f). This
can be an anisotropic stochastic background, or a localized persistent source. We
are assuming also that this distribution can be factorized in two elements, i.e.,
PA(Ω̂, f) = PA(Ω̂)Ph(f)1 (Mitra et al., 2008; Thrane et al., 2009). In this case, the
gravitational-wave spectral density definition, with the above assumption, changes
from Eq. 3.3 to (Mitra et al., 2008):

〈h̃∗A(f, Ω̂)h̃A′(f
′, Ω̂′)〉 = δ(f − f ′) 1

4π
δ2(Ω̂, Ω̂′)

1

2
Ph(f)PA(Ω̂). (3.15)

Our interest is to define a detection statistics for a selected sky position, in
order to search for a point-like source as an emitting neutron star. We choose then
P(Ω̂) = δ2(Ω̂, Ω̂′): a two-dimensional delta function to describe a point source
distribution. The estimator of Y and the variance will be (S W Ballmer, 2006;
Mitra et al., 2008)

1In the isotropic case we considered a uniform distribution PA(Ω̂) = cost = 1.
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〈Y (Ω̂)〉 = T

(
Q̃(f, Ω̂),

γ(f, Ω̂)Ph(f)

P1(f)P2(f)

)
; σ2

Y (Ω̂) ≈ T

4

(
Q̃(f, Ω̂), Q̃(f, Ω̂)

)
,

(3.16)
where the directional filter function is

Q̃(f, Ω̂) = λ
γ∗(f, Ω̂)Ph(f)

P1(f)P2(f)
. (3.17)

The approach is similar to the continuous-wave blind searches described in Sec.
2.2. With the radiometer method and with the choice made on P(Ω̂), it is possible
to study the detector sensitivity bandwidth with a relatively refined resolution
(usually, 1/32 Hz, B. P. Abbott et al., 2019c; R. Abbott et al., 2021d), pointing
the analysis toward few selected sky coordinates (B. P. Abbott et al., 2017b, 2019c;
R. Abbott et al., 2021d), or, via the definition of a grid in the sky, running an
all-sky search in a very fast and efficient way (R. Abbott et al., 2022c; Ain, Suresh,
et al., 2018). We refer usually to this kind of analysis as narrowband radiometer,
as opposed to broadband searches which integrate the detection statistics over the
full frequency range (e.g. R. Abbott et al., 2021d).

3.1.3 Overlap reduction function

The overlap reduction function in the radiometer analysis is crucially important
because it includes the information of the phase shift between the two detectors of
the baseline for any given direction.

In the preceding section we presented the best statistics for a given sky direction
vector, not considering that the Earth based detectors follow the rotation and
orbit motion of the planet. This means that the orientation of the single detector
with respect to the source, as well as the orientation of the baseline between two
detectors, will change with time.

In section 3.1 we assumed the stationarity of the detector noise to build the
detection statistic, and since the assumption breaks up for coherence time above
∼ 200 s (B. P. Abbott et al., 2019c; R. Abbott et al., 2021d), we use a semi-coherent
approach in order to keep valid the stationarity condition. Here we add that, in the
chosen time segment, also the detector parameters will be stationary: the antenna
patterns FA

i (Ω̂) and hence the source direction Ω̂, the baseline vector ∆x and the
overlap reduction function (Mitra et al., 2008).

Now the overlap factor depends on the frequency, on the direction Ω̂, but also
on time, so it is different for different j segments. Keeping in mind that, with the
semicoherent approach, time and frequency are discretized with resolution of Tcoh
and 1/Tcoh respectively, the general expression for the overlap reduction function
is (S W Ballmer, 2006)

γft(Ω̂) =
1

2

∑
A

FA
1,ft(Ω̂)FA

1,ft(Ω̂)ei2πfΩ̂·∆x/c, (3.18)

which is the integrand of γiso defined in Eq. 3.8.
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In general, the overlap reduction function is an object with a behavior difficult
to handle and summarize in a plot. First of all, it is a complex quantity and it
contributes to the detection statistics in a non trivial combination with the Fourier
transform of the detector stream. Moreover, it changes with time and it depends
also on frequency and sky coordinates. Since in our searches we integrate over
several months (B. P. Abbott et al., 2019c; R. Abbott et al., 2021d), to show the
magnitude of the effect of the overlap factor, it can be useful to compute an average
over a sideral day. In this way, with equatorial sky coordinates, we can collapse
the dependency on the right ascension and time, keeping only the one on frequency
and declination. Taking the absolute value of the result, the daily-averaged overlap
factors is shown in Fig. 3.2 for the three pairs with the detectors LIGO Hanford
(labeled as H), LIGO Livingston (L) and Virgo (V).

Figure 3.2: Contour plots showing, for the three pairs made by the LIGO-H, LIGO-L
and Virgo detectors, the absolute value of the daily-averaged overlap reduction function
〈γ〉day. The curves are shown as a function of the declination δ, for a range of frequencies
between 100 Hz and 200 Hz. The highly convoluted shape of the function makes very
difficult to foresee its interaction with the data Fourier transform when computing the
cross-correlation statistics.
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3.1.4 The sky map

Now that we have discussed all the elements of the optimal detection statistic,
we are ready to define the narrowband sky map. In radiometry, the filter used for
the cross-correlation creates the so-called dirty map (Mitra et al., 2008), which
reproduces a sky distribution of the detection statistic influenced by the chosen
filter. A signal will result smeared along the sky map (see Mitra et al., 2008 for a
detailed discussion); to avoid this effect we create the clean map, starting from the
dirty one and deconvolving it with the so-called Fisher information or beam matrix,
which carries the information on the covariance of the detection statistic (Mitra
et al., 2008; Thrane et al., 2009).

The dirty map is an array of the cross-correlation statistics, spanning the sky
positions α, for each frequency bin f , summed over the short-Fourier transformed
segments with timestamp t (Thrane et al., 2009):

Xα,f =
4

Tcoh

∑
t

Hfγ
∗
α,ft

P1,ftP2,ft

s̃∗1,fts̃2,ft, ; (3.19)

the Fisher matrix, with same meaning for the indexes, is:

Γαβ,f = 4
∑
t

H2
f

P1,ftP2,ft

γ∗α,ftγβ,ft. (3.20)

The quantities in Eq. 3.19 and 3.20 are:

• s̃i,ft the Fourier transform amplitudes and Pi,ft the power spectral density
estimation for the time segment t and the frequency bin f , from the detector
i = {1, 2};

• γα,ft the overlap reduction function;

• Tcoh the segment coherence time;

• Hf = Ph(f) from now on will indicate the template function of the sig-
nal spectral model with Ph(f) introduced in Sec. 3.1.2, but with discrete
frequencies.

The deconvolution of the dirty map Xα with the Fisher matrix Γαβ returns the
detection statistics for the gravitational-wave power in each of the points of the
map. The collection of them is the clean map:

Yα =
(
Γ−1
αβ

)
Xβ. (3.21)

With the angular distribution we have chosen, for the radiometer search, the
correlation between different pixels can be ignored (B. P. Abbott et al., 2017b,
2019c; R. Abbott et al., 2021d). Then, we will consider only the diagonal terms of
the Fisher matrix, which takes the form of Γ−1 = σ2 ⇒ Y = Xσ2. We can then
write the detection statistics and standard deviation integrated over many segments,
similarly to Eq. 3.14:

Yαf,tot =
1

σ2
αf,tot

∑
j

Yαf,j
σ2
Yαf,j

;
1

σ2
αf,tot

=
∑
j

1

σ2
Yαf,j

. (3.22)
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Equation 3.22 constitutes the final output of the radiometer method (Mitra
et al., 2008; Thrane et al., 2009), from where outliers over a given threshold are
selected and followed up with various methods (B. P. Abbott et al., 2017b, 2019c; R.
Abbott et al., 2021d). If no detection has been claimed, upper limits are computed
(as it will be later explained in Sec. 3.1.6).

From the study of the beam matrix in Mitra et al., 2008, it can be shown that
the resolution of the radiometer is proportional to the sensitivity bandwidth and
the distance between the two detectors |∆x|. Assuming the same bandwidth for
all the current ground-based interferometers, we have for the LIGO-H+LIGO-L
baseline that a grid in the sky would have cells with a radius of ∼ 0.1 rad (6◦),
implying ∼ 1000 independent patches. For longer baselines, the resolution power is
expected to be ∼ 3 times higher.

Dataset combination

For the most recent narrowband radiometer searches, to improve the statistics
obtained from the data, it was possible to exploit the baselines formed by the
detectors LIGO-H, LIGO-L, Virgo, with the perspective to add the fourth detector
KAGRA (Somiya, 2012) in the upcoming analyses. Moreover, like it has been done
for O2 and O3 analyses, it is useful to combine the results coming from the previous
runs with the most recent data (B. P. Abbott et al., 2019c; R. Abbott et al., 2021d).
It can be shown that the combination of datasets coming from the same detector,
but from different runs, and the combination of datasets coming from different
detectors in the same period, can be treated in a similar way, assuming that in
either cases the noise can be considered uncorrelated between the two datasets.

Let N be the number of used datasets to obtain the combined dirty maps and
Fisher matrices. It is enough to sum the statistics from the single dataset (B. P.
Abbott et al., 2019c; R. Abbott et al., 2021d; Thrane et al., 2009):

XNα =
∑
k

Xk
α; ΓNαβ =

∑
k

Γkαβ. (3.23)

The clean map will follow from Eq. 3.21: Y Nα = ΓN
−1

αβ XNβ , with σN = 1/
√

ΓN (B. P.
Abbott et al., 2019c; R. Abbott et al., 2021d; S W Ballmer, 2006; Thrane et al.,
2009).

Data folding

Let us take the equations for the dirty map and Fisher matrix (Eqs. 3.19 and
3.20) and let us define the following variables:

• the kernel K = TcohHγ;

• the variance σ2 = T 2
cohP1P2/4;

• the cross-correlated spectral density C = s̃∗1s̃2.

With these definitions, the sky map equations become

Xα,f =
∑
t

Kα,ft

σ2
ft

Cft Γαβ,f =
∑
t

K∗α,ftKβ,ft

σ2
ft

. (3.24)
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Figure 3.3: A scheme showing the concept of data folding from Goncharov et al., 2018.
The SNR(t, f) distribution over several days, with the folding, results to be collapsed in
only one effective sidereal day.

It can be shown that the integration over time can be expressed in two parts:
one over the sidereal days, along the full observation time, and one over the sidereal
timestamp ts of the segments, within a sidereal day with duration τs (Ain, Dalvi,
et al., 2015). Defining the time label of a segment as t = iτs + ts, where i is the
index of the day, the sum in Eq. 3.24 changes from

∑
t to

∑
i

∑
ts
. The dirty and

variance maps can be then rewritten as follows:

Xα =
τs∑
ts=0

K∗fts,α
∑
i

Cf(iτs+ts)

σ2
f(iτs+ts)

Γαβ =
τs∑
ts=0

K∗fts,αKfts,β

∑
i

1

σ2
f(iτs+ts)

.

(3.25)

We note that, since the kernel contains only the overlap reduction function and
the signal template, it has a daily periodic behavior . Thanks to this, we can exploit
the linearity of the cross-correlation and variance statistics, compressing them in
only one effective sidereal day containing the same information of several months
of observation.

In Fig. 3.3 we see how the data coming from the segments are compressed into
a sidereal day, keeping the binning in the frequency-time space.

3.1.5 Implementations of the radiometer method

The radiometer narrowband search has been implemented in the context of
the stochastic gravitational wave background search using the stochastic.m (The
LIGO, Virgo, KAGRA collaborations, 2022) and PyStoch (Ain, Suresh, et al., 2018)
pipelines. The analysis can be separated in two steps: a pre-processing one, where
intermediate files containing the noise power spectral density estimation and the
cross-correlation statistics are generated; a post-processing step, where dirty map
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Figure 3.4: Flowchart showing the narrowband radiometer search pipeline as exposed in
Sect 3.1.5, edited from Ain, Dalvi, et al., 2015.

and Fisher matrix are calculated and integrated, producing the final clean map,
variance and SNR.

In the next sections we describe the most updated procedures used for the O3
narrowband search (R. Abbott et al., 2021d). Since we have shown how the results
from multiple baselines can be easily combined, we will consider the analysis of
data for only one baseline of two detectors.

A flowchart summarizing the steps of the narrowband radiometer search is
shown in Fig. 3.4; details on the main steps of the search are given below.

Pre-processing The strain time series from the two detectors are down-sampled
from the default sampling frequency of 16 kHz to 4 kHz and filtered with a
high pass filter above 11 Hz, to reduce the contamination from low-frequency
noise (Thrane et al., 2009). From the two time series we exclude all segments
that cannot be used for the analysis, for example because the condition of
Gaussianity or stationarity of the noise is violated, or due to instrumental
artifacts or signal injections present in the data (see Sect. 3.2.2). The data
then are split in 50% overlapping windowed segments of 192 s (B. P. Abbott
et al., 2019c; R. Abbott et al., 2021d).

The portions of the data which have at least three contiguous segments
are identified. From these selected time periods, the segments are Fourier
transformed and the frequency bins are averaged together in order to bring
the resolution from the natural 1/192 Hz to 1/32 Hz (Thrane et al., 2009).
This gives the SFTt dataset for the semicoherent analysis, where t refers to
the timestamp of the analyzed segment.

Taken a series of three contiguous SFTt, the cross-correlation spectral density
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C is calculed using the middle one; the noise power spectral density Pn is
instead estimated using the segments immediately before and after (Thrane
et al., 2009). Lastly, the overlap factor for each analyzed time segment is
computed.

This step of the analysis is carried out by the stochastic.m code, which
takes the data and the search parameters and produces the intermediate
files used for the post-processing step. Each contiguous segments interval
compounds one job, and separated output files are generated, for a total
number of jobs around 1000 usually ran on a cluster (for O3 it has been used
the LIGO-Caltech cluster, LIGO Caltech, 2021).

Post-processing The post-processing step takes the data from the intermediate
files, either folded or not, and computes the sky maps. The sky maps from
each jobs are then integrated in order to have the final clean, variance and
SNR maps as a function of frequency. All frequencies containing known
instrumental lines or sharp noise features are vetoed.

The analysis can be carried out as a targeted narrowband search, computing
Y and σY only for a given set of sky coordinates, or an all sky search where
all the maps for each frequency bins are computed.

Even if stochastic.m is able to run the targeted post-processing portion of
the analysis, to save a significant amount of computation time we have used
the newly developed and very efficient PyStoch tool (R. Abbott et al., 2021d),
which considers by default the folded data (and can also be used for all-sky
searches).

3.1.6 Standard follow-up and upper limits

In the first three observing run searches, a set of three promising targets has
been chosen for the radiometer narrowband analysis: Scorpius X-1, SN1987A and
the Galactic Center (B. P. Abbott et al., 2017b, 2019c; R. Abbott et al., 2021d).
For each of these directions, the SNR versus frequency values have been stored,
like in the plots in Fig. 3.5, for the three baselines combination with the LIGO-H,
LIGO-L and Virgo detectors. All the frequency bins having an |SNR| ≥ 42 were
selected.

This procedure is repeated by introducing a delay of 1 second between the
time series from the two detectors. In this way we are disrupting any correlation
between the signal components of the data and we have a good approximation of an
only-noise dataset, which is useful to compare with the results of the real zero-lag
analysis.

The outliers selected from the analysis are then compared with known instru-
mental lines, in order to search for eventual sub-peak that would have survived

2The reason why also negative SNRs are considered will be more clear in Chapter 3: an effect
showing an excess power in a certain frequency, but not following the expected phase evolution for
a given target, can appear as a high negative SNR. These frequencies are considered as outliers,
in order to inspect the possibilities that high negative SNRs are off-position signals or, in general,
signals that are not correctly recovered by the pipeline.
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the vetoing step, and also with the time-shifted SNR versus f plots. If in the
time-shifted plot there is a SNR ≥ 4 in the same or in an adjacent bin of the
outlier , then probably that frequency is affected by a noise disturbance and will be
discarded. For survival candidates, we study the evolution of the SNR during the
observation time. Recording the cumulative sum of the detection statistics over the
time segments, we check the proportionality with

√
T that would be signature of a

persistent gravitational-wave signal.
Moreover, the statistical significance for each frequency bin is computed accord-

ing to the following description:

Bin combination The frequency bins of Y and σY are combined together to
avoid spectral peaks whose power is split in two bins by Doppler modulations.
Selecting the frequency bin fj, and the number N of neighbors we want to
combine together, starting from the frequency j = N , all bins between fj−N
and fj+N are combined summing the detection statistics Yj and squared-
summing the standard deviation σYj .

By default, only the first neighbors are combined, because with the frequency
resolution commonly used in the narrowband radiometer searches (1/32 Hz,
B. P. Abbott et al., 2019c; R. Abbott et al., 2021d), we do not expect the signal
to be spread over multiple bins. If we expect other frequency modulations,
like for sources in binary systems, or a significant spindown for the observation
time, a wider range of neighbors is combined to include all the modulation in
one bin, depending on the source parameters (see Sect. 3.2.3 for more details
on the binary systems expected Doppler modulation)

At the end, we will have a new SNR versus f plot with combined bins having
width N/32 Hz, and a range between fstart+N and fend−N , with the labels
start and end indicating the chosen analysis bandwidth.

p-values When we combine bins, we go from a situation where the different
frequencies were independent to each other, to SNR distributions with a
high degree of correlation. To give a statistical significance to our results,
we need to simulate a high number of random Gaussian instances (& 1000)
of the estimator Yj for each frequency bin, with standard deviation equal to
the one obtained from the data for that bin. The simulated Y are combined,
summing together the same number of bins of the measured ones according to
the source expected frequency modulation. In this way we have combined-bin
SNR distributions for the noise-only hypothesis.

From all noise realizations, the highest SNR for each bin is selected to form the
maximum SNR versus frequency distribution. The difference between these
two distributions gives the significance of each frequency bin as p-values (B. P.
Abbott et al., 2017b).

In absence of a detection, upper limits are computed starting from the definition
of the expected estimator µY (B. P. Abbott et al., 2017b; Messenger, 2010; Whelan
et al., 2014), given the gravitational wave signal amplitudes A+ = 1

2
h0(1 + cos2ι),
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Figure 3.5: SNR versus frequency for the O3 targeted narrowband search. The search
has been performed with the stochastic.m and PyStoch pipelines over the full O3 data,
calibration C-01, sub-sampled at 4096 Hz split in segments with Tcoh = 192 s. The
frequency range is between 20 and 1720 Hz, with a coarse grained resolution of 1/32 Hz.
The data from the detector LIGO-H, LIGO-L and Virgo have been used to produce the
combined detection statistics and variance, as explained in Sect. 3.1.4. Known instrumental
lines have been removed from the final SNR results.
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A× = h0cosι, with ι the inclination angle:

µY =

∑
j(A

+2
F+
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+
2j + A×

2
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2j)(F

+
1jF

+
2j + F×1jF

×
2j)∑

j(F
+
1jF

+
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×
2j)

2
. (3.26)

Note that the antenna patterns F {+,×}{1,2}j for the segment j, defined in Eq. 1.62, have
an explicit dependency on the polarization angle ψ. The sum Σj is carried over all
segments used for the analysis.

Since we do not know the source inclination angle and polarization, a set of
values of µY are computed for several values, for example 50, of both cosι and
ψ, and with the Bayesian approach the upper limits are calculated marginalizing
over those values. Moreover, to take into account the uncertainty and systematic
errors in the calibration process (Acernese et al., 2022; Sun et al., 2020), another
marginalization is done over the unknown calibration correction factor l. The prior
probability distribution is assumed to be Gaussian, with mean 1 and standard
deviation given by the estimated calibration uncertainty σl (B. P. Abbott et al.,
2017b; Whelan et al., 2014).

The likelihood function that will be marginalized is

p(Y |h0, ι, ψ, l) = exp

{
−1

2

(
l

σl

)2

− 1

2

[
Y (l + 1)− µY
σY (l + 1)

]}
, (3.27)

and the marginalized posterior for each frequency3 is (B. P. Abbott et al., 2019c;
Whelan et al., 2014)

p(h0|Y ) =

∫ 1

−1

d(cosι)

∫ π/4

−π/4
dψ

∫ ∞
−1

dl p(h0, ι, ψ, l). (3.28)

The upper limits are defined integrating the posterior function up to the value
hUL0 that returns the chosen confidence of 90% (B. P. Abbott et al., 2017b):

0.9 =

∫ hUL0

0

p(h0|Y, σY ). (3.29)

To compute the upper limit for the combined data from multiple datasets (base-
lines or run, as stated in Sect. 3.1.4), assuming that the detectors are independent,
as well as their calibration factors lN (having given uncertainty σlN ), we multiply
the single likelihood functions (Whelan et al., 2014):

p(~Y |h0, ι, ψ,~l) =
∏
N
p(YN |h0, ι, ψ, lN ), (3.30)

with N running over the combined datasets
The results of the O3 targeted narrowband analysis, which I have actively

contributed to, are shown in R. Abbott et al., 2021d.
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Figure 3.6: An illustration of the HEALpix grid from Gorski et al., 2005. It shows the
meaning of the Nside parameter, where the side of the first grid is divided in equispaced
segments to generate the grids with Nside = 2, 4, 8.

3.1.7 All-sky search

The all-sky search for persistent sources, using the radiometer method, has
been performed with the PyStoch pipeline on O3 data (R. Abbott et al., 2022c).
Exploiting the reduced input size thanks to the folding, the pipeline is able to load
all needed data at once from the intermediate file (coming from the pre-processing
step described in Sect. 3.1.5). With those data, it builds efficiently the full sky
maps for each frequency bin using a single cluster node in the timescale of ∼ 1
hour.

For this search, an equispaced spherical grid, the so-called HEALpix (Gorski
et al., 2005), has been used.

The HEALpix grid is defined by the sole parameter Nside, which indicates the
number of divisions on the side of a cell in the base pixel resolution (see Fig. 3.6),
and each pixel is identified by a unique index that can be directly translated to
angle sky coordinates. For the O3 search Nside = 16 was chosen, which corresponds
to 3072 pixels with a resolution of ∼ 3.67◦. This resolution is a factor of 3 more
refined to the one computed in Mitra et al., 2008 for the natural resolution of the
radiometer method using the LIGO-H plus LIGO-L baseline, and it is comparable
with the one with baselines involving Virgo and KAGRA (see Sect. 3.1.2).

This grid is very different from the one used in the FrequencyHough pipeline
described in Sect. 2.2.1. A comparison is shown in Fig. 3.7, where the two spherical
grids are projected on a plane: the main difference is that the distance between the
center of the cells of the grid in the HEALpix does not depend on the latitude, as it
does in the FrequencyHough grid. As it will be shown in Chapter 3, this difference

3The frequency dependency is omitted in the prior and posterior equations to lighten the
notation, since we are considering a signal coming from a monochromatic source. Nevertheless,
the computation of the upper limits is carried on for each frequency bin in the analyzed range,
with the same estimator µY and with their respective Yf and σYf .
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Figure 3.7: A comparison of the HEALpix grid with Nside = 16, 3072 pixels and a
FrequencyHough grid with comparable size. It is important to remark the different sky
tiling for the follow-up analysis of candidates from the all-sky radiometer search.

has been addressed when developing the continuous-wave dedicated follow-up for
the radiometer candidates.

The candidate selection method consisted into comparing the SNR results with
the SNR of the time-shifted analysis, similarly to what has been done for the
directed narrowband analysis (see Sect. 3.1.5).

Since the analysis is performed over ∼ 3000 points (rather than 3), and we will
have a far higher production of outliers, the following procedure has been chosen (R.
Abbott et al., 2022c):

• the SNR distributions in the zero-lag and time-shifted analyses are projected
on the frequency dimension, taking the maximum SNR from each map;

• defining frequency bands of 10 Hz, a histogram of the SNRmax(f) distributions
for each band is computed;

• for each 10 Hz band, the 99th percentile of the time-shifted SNRmax histogram
is identified, then a threshold SNRthr is defined averaging three neighboring
bands;

• any of the original frequency-sky bins falling in each sub-band, with SNRmax ≥SNRthr,
is stored for the follow-up study.

The treatment of the follow-up for the candidates coming from the all-sky
radiometer analysis will be described in the next chapter.

3.2 The fast identification project

As we have seen in the previous section, with gravitational-wave radiometry we
can create a map of the cross-correlated filter statistics over the full sky, with a
very high efficiency and relatively low computational resources, with the trade-off
of a lower reachable sensitivity.
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Thanks to the speed of the radiometer algorithm, it is possible though to have
quickly a set of outliers to analyze, but in order to be able to claim a detection we
need a dedicated follow-up.

The project presented here then consists of two steps: the first has been focused
on the characterization and usage of the stochastic analysis pipelines. The objective
is to study how to reduce the parameter space to frequency-sky regions with a high
SNR, selecting candidates to be further analyzed. The second one consists in the
development of a follow-up of those candidate parameter-space regions, using the
FrequencyHough pipeline to analyze them in order to reach a higher sensitivity.

For the first part, the code used has been PyStoch, which takes advantage
of data folding and allows us to run the all-sky, all-frequency analysis in a short
time, building SNR sky maps for each frequency bin within a defined range and
resolution. On these maps we can select the pixel areas satisfying some relevant
conditions, such as SNR above a certain threshold, or a stricter criterion as the one
presented in R. Abbott et al., 2022c (see Sect. 3.1.7), and investigate the outliers
with a more thorough analysis with continuous-wave tools.

The continuous-wave follow-up consists in building customized peakmap for
each candidate, for the full observation time and in a small frequency range around
the outlier frequency, and performing the FrequencyHough transform directed to a
certain number of sky points in a region around the candidate position.

This section will show in first instance the results of an in-depth set of tests
performed to characterize the behavior of the radiometer analysis when used for the
continuous-wave searches. Subsequently, the follow-up method will be explained.

3.2.1 Continuous-wave radiometer characterization

The first step of the project has been dedicated to a set of tests aiming to have
more information on the behavior of the radiometer search for monochromatic
point-like sources.

The study involved tests on software generated data, using both simulated noise
and real data where fake signals have been injected. To keep the computation
simpler and faster, in first instance, a dataset of the so-called frame files, containing
the data time series, has been generated with simulated white gaussian noise, with
a sampling frequency of 512 Hz (that means with a band with maximal frequency
of 256 Hz ) and

√
Sh = 4× 10−24 Hz−1/2.

On this simulated noise, in turn, various fake signals have been injected. For both
the noise and the pulsar signals generation, the tool lalapps_MakeFakeData_v5 has
been used, which is part of the LALsuite software (LIGO Scientific Collaboration,
2018). With this tool it is possible to simulate signals without noise. The feature
has been proven useful to perform tests on real data, where frame files with
only simulated signals were generated with the same time intervals and sampling
frequency of the data files. Afterward, using the PyCBC Python libraries (Nitz et al.,
2022), the two time series were summed together element by element. The result
was finally stored for the radiometer analysis.

For most of the tests, the pair of detectors LIGO-Hanford and LIGO-Livingston
was used both for the noise simulation and for the injections on real data, because
they have similar sensitivity.
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With lalapps_Makefakefata_v5 we could simulate at the same time a certain
number of isolated and/or binary pulsars with the complete set of parameters:

• signal amplitude h0, frequency and spin derivatives;

• equatorial sky coordinates in radians;

• source inclination angle and signal polarization angle;

• reference phase and time;

• if needed, orbital parameters.

In all of our tests, the spin derivatives have been set to 0, as well as the inclination
and polarization angles. Moreover, to stay in a fairly stable region of the detectors,
the simulations and tests have been limited to the [100-200] Hz frequency range.

The data have been analyzed equivalently with the narrowband targeted mode of
PyStoch and stochastic.m, holding the general conventions used for the narrowband
stochastic background searches (see Sect 3.1 and B. P. Abbott et al., 2017b, 2019c;
R. Abbott et al., 2021d), such that the coherence time Tcoh = 192 s and the
frequency resolution δf = 1/32 Hz.

Detection statistics

The first test with simulated signals aimed to study the trend of the output
detection statistics Y , when varying the amplitude h0 of the signals injected.

To achieve this, a reasonable number of 10 signals from isolated pulsars have
been simulated, keeping for all the same parameters except for the amplitudes,
which were varied uniformly in a defined range, and the frequencies, varied as well
uniformly in order to have the results in only one plot. The separation between the
injections has been set with a wide random variation to avoid interferences between
the different signals.

The same procedure was followed both for injections on the simulated noise
mentioned above and on O2 real data (B. P. Abbott et al., 2019c). To have
comparable observation time, the time duration of the dataset with simulated noise
has been chosen equal to 3 months, similar to the integrated time of the segments
used for the O2 search (B. P. Abbott et al., 2019c).

In the real data case, the injected amplitudes spans the range 7×10−26 - 5×10−25;
in the simulated noise case, because the lower noise spectral amplitude, it was
possible to reduce the range to 6× 10−26 - 1.8× 10−25.

The results are shown in Fig. 3.8. For a general comparison of the obtained
values with the theoretical ones, Eq. 3.264 has been used for each amplitude value
to compute the expected Y and it has been superimposed in the plot.

4Reproduced here for the reader’s convenience:

µY =

∑
j(A
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S
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Figure 3.8: Comparison between the estimated and retrieved clean maps statistics Y ,
analyzing injections of isolated pulsars at various amplitudes on simulated noise (left
plots) and real data (right plots). The output of the radiometer analysis is shown in blue,
while the frequency bins of the injected signals are highlighted in orange; superimposed in
red the theoretical estimation from Eq. 3.26. In the two plots below, the SNR values
are plotted with same color codes. The first signal in the Y (f) plots with an SNR above
4 (respectively 4.2 and 9.3) is indicated with an arrow. The values of Y are defined up
to a normalization constant, that has not been applied in the computation of µY , this is
why the expectation values are systematically higher. Nevertheless, the purpose of this
test was to study the trend of the detection statistics and not the actual values, since the
determining quantity for the identification of a signal is the SNR.

Multi-injections test

Here we explore the analysis made for the targeted narrowband stochastic search.
Four isolated pulsars were injected on simulated noise and on O2 real data with
the same amplitude (h0 = 2× 10−25 for the test on simulated noise, h0 = 4× 10−25

for the software injections on real data) at random well separated frequencies.
These tests, whose results are shown in Fig. 3.9, revealed that noise fluctuation

on real data can affect significantly the chances to detect a signal even with some
months of gathered statistics, especially in a more realistic situation with much
fainter signals.

While the simulated noise shows a fairly stable SNR distribution for the injected
amplitudes, the case on real data shows significant differences in the retrieved SNR.
Having lower level of noise, as well as a longer observational period to achieve a
higher level of statistics, would stabilize the results obtained by the analysis.
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Figure 3.9: Results of a test analysis on four signal injections at different sky positions
on simulated noise (left) and real data (right). The signals have the same amplitudes.

To investigate further the behavior when many signals are present, a set of three
different tests have been performed, based on the generation of a single instance of
simulated gaussian noise, and injecting in turn three different sets of signals:

• four neutron stars at different coordinates (the ones of Sco X-1 and SN1987a
and two other random sky points) with amplitude of h0 = 2× 10−25;

• the same four sources plus six more neutron stars at different coordinates,
with same amplitude;

• the same starting four sources, but with the amplitude lowered to h0 =
1.5× 10−25.

The results are shown in Fig. 3.10 and they are fairly enlightening in showing
how radiometer analyses respond in a situation where many signals are loud enough
to appear with a high SNR.

First of all, we see again the fluctuation of the SNR even if the amplitudes of the
injected signals are the same. Secondly, lowering the amplitudes, the retrieved SNR
is scaled accordingly, with some differences probably due to the different behavior
of the overlap reduction function in the different coordinates and frequencies. The
last important consideration is that, when increasing significantly the number of
loud signals, the SNR of the original four fake signals remains the same, showing
that the assumption of independent sky map pixels and frequency bins hold, and
the signals do not interfere together.

Given the loudness of the injected signals, however, some weird behaviours
appear, often shown as a high negative SNR especially in bins where there are
injections and we are not analyzing the respective sky coordinates. This is what we
expect to happen when a loud feature is present in the data, but does not follow the
expected phase evolution for the chosen coordinates (see Fig. 3.11): the feature will
result anti-correlated with the expected template for a given sky position, returning
a negative detection statistics.

Sometimes, when analyzing a certain source from a given sky position, signals
which are injected in other sky coordinates even exhibit a high positive SNR in
their respective frequency bins. The explanation is similar to what happens for
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Figure 3.10: Results of different tests on: 10 isolated pulsars with the same amplitude
and random different coordinates (black squares), a subset of those pulsars (colored
squares), the same subset but with lower amplitude (colored triangles).

Figure 3.11: Directed analysis for two sky directions (i.e., the coordinates of Sco X-1 and
SN1987a) for simulated noise with an injection of a sinusoid function with fixed frequency.
The output of the radiometer analysis is a high negative SNR, showing the presence of a
feature in the data high enough to be seen by the cross correlation statistics, but being
anti-correlated with respect to the expected phase evolution for the positions we analyzed.

loud instrumental lines: the involved frequencies show high SNR independently of
what point in the sky we are analyzing. However, this is not a source of concern,
since the simulated amplitudes on these tests were much higher than the ones we
expect from real sources.

An example of how a monochromatic disturbance behaves in the radiometer
search is shown in Fig. 3.11. On the Gaussian noise time series we have injected a
sinusoid function, with no modulations, to simulate any kind of source that is not
following the phase evolution expected for the targeted direction. The data then
were analyzed towards the usual directions Sco X-1 and SN1987a, and the results
show in both cases a high negative SNR corresponding to the injected sinusoid
frequency. In this way it was possible to verify the interpretation of the strong
negative SNRs that appear in the analyses and in the tests done.
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Figure 3.12: Selection of sky maps at the frequencies of some software injections. The
parameters are the same of the previous tests based on the O3 narrowband search (see
Sect. 3.2.1 and Fig. 3.9)

.

All-sky test

So far we have always considered targeted analyses because it was useful in
the study of the SNR versus frequencies, as we selected only one pixel in the
narrowband sky maps.

Using the PyStoch code, however, we can compute and save all narrowband maps
at once in a single output file. Then, going through the maps for each frequency
bin, we can select sky positions with a higher statistical significance, like SNR
above a certain threshold or more robust criterion (see Sect. 3.1.7 and R. Abbott
et al., 2022c for more details on the outlier selection for all-sky analysis performed
with PyStoch).

In Figure 3.12 we show as an example the narrowband maps at frequencies
corresponding to the four injections on simulated noise. The analysis process is the
same of the tests shown in Sect. 3.2.1. This time, instead of using the targeted mode
of the code, the full sky maps have been generated for the full search frequency
range. The maps at the frequencies of the four software injections have been selected
and plotted.

3.2.2 Hardware injection analysis with O2 and O3 data

In this section we summarize the results of an investigations on O2 and O3
LIGO Hanford-Livingston data to test the behavior of the radiometer search
with an analysis aiming at retrieving the hardware injections on real data. The
hardware injections are continuous signals injected directly in the detector during
the observational runs, and not via software simulations. The list of injections with
their parameters is shown in Tab. 3.1.

The analyses set up is the same as the one used for O2 and O3 narrowband
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Table 3.1: O2 and O3 hardware injection parameters (LIGO collaboration, 2017, 2019)

# h0 (O2) h0 (O3) f0 (Hz) ḟ (Hz/s) Dec (°) RA (°)

0 9.8×10−25 6.1×10−26 265.58 −4.15× 10−12 -56.22 71.55
1 4.4×10−24 5.5×10−25 848.94 −3× 10−10 -29.45 37.39
2 1.7×10−24 7.6×10−26 575.16 −1.37× 10−13 3.44 215.26
3 8.2×10−25 1.3×10−25 108.86 −1.46× 10−17 -33.44 178.37
4 4.6×10−24 1.1×10−24 1391.01 −2.54× 10−08 -12.47 279.99
5 1.5×10−24 4.0×10−25 52.81 −4.03× 10−18 -83.84 302.63
6 8.9×10−25 3.8×10−25 145.50 −6.73× 10−09 -65.42 358.75
7 4.6×10−24 1.7×10−25 1220.44 −1.12× 10−09 -20.45 223.43
8 1.1×10−24 1.3×10−25 190.17 −8.65× 10−09 -33.42 351.39
9 3.0×10−24 1.3×10−25 763.85 −1.45× 10−17 75.69 198.89
10 4.0×10−24 6.3×10−25 26.33 −8.5× 10−11 42.88 221.56
11 5.6×10−24 3.2×10−25 31.42 −5.07× 10−13 -58.27 285.10
12 3.3×10−24 2.6×10−25 37.85 −6.25× 10−09 -16.97 331.85
13 2.2×10−22 2.6×10−24 12.43 −1× 10−11 14.32 14.32
14 3.4×10−24 1.8×10−24 1991.09 −1× 10−12 -14.32 300.80
15 × 8.7×10−25 2991.09 −1× 10−12 -14.32 300.80
16 × 1.6×10−25 234.57 0 -15.64 19.98
17 × 8.4×10−26 890.12 0 -15.64 109.98

searches (B. P. Abbott et al., 2019c; R. Abbott et al., 2021d). Regarding the data,
for the O2 test the standard calibrated and cleaned (Cahillane et al., 2017; P. Covas
et al., 2018) strain time series have been used. For the O3 search, the peculiar
noise behavior faced during the run, already mentioned in Sect. 2.1, brought to
several datasets with different cleaning and filtering processes applied, and it has
been difficult to find the one that could have fitted properly the analysis.

After several attempts, the choice has been to use the cleanest possible dataset,
where, apart for the standard calibration and cleaning procedures, also the gating
(Mata et al., 2021; Zweizig et al., 2021) and an additional filtering for instrumental
noise below 60 Hz has been applied. This dataset was used with the FrequencyHough
pipeline to retrieve successfully a subset of the available hardware injections.

The analysis on O2 data has been successful and most of the hardware injected
signals (with parameters shown in Tab. 3.1) are retrieved with correct parameters.
The analysis on O3 data, on the other hand, does not show in the search frequency
interval (20-1726 Hz) any of the injections from the list shown in Tab. 3.1.

To establish whether the problem involves the data or the search parameters,
another test has been done on O3 data, injecting via software the set of pulsars with
exactly the same parameters from the list of candidates shown in Tab. 3.1, plus a
set of four pulsars at different frequencies between 100 and 200 Hz, all located in a
single random sky position and amplitudes of h0 = 1, 1.22, 1.38, 1.5× 10−24 5.

The data files with the software injections were prepared generating a set of

5Like all the other simulate signals used for characterization tests, spindown, inclination angle
and polarization angles are set to 0
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frames, with same starting time, duration and sample frequency as the O3 real
frames, and contained only the signals of the fake pulsars via lalapps_MakeFakeData
_v5. Then, the software injections and the O3 datasets have been summed together
using PyCBC, like for the O2 tests shown in the above sections. The resulting frames
have been saved and analyzed.

Results

The plots in this section (Fig. 3.13 and Fig. 3.14) show all the SNR versus f
results from the hardware injections study (13 pulsars in different sky positions for
O2, 15 for O3 in the search frequency range).

Similarly to what has been done before, for each analysis the different sky points
are independent to each other and they are plotted in the same figure with different
color codes. The colors indicate at which frequency we expect to see the injection

Figure 3.13: O2 and O3 hardware injections summary. Most of the O2 ones appear
very sharp, while the O3 plots show only instrumental lines.

Figure 3.14: Left: plot of the results of the analysis with the four software injections,
superimposed in red over the rest of the hardware injections analysis results. Four red line
highlighting their frequency are also shown. The software injections were intentionally very
loud in O3, to show up with a high SNR in every other sky direction we analyzed. Right:
analysis on calibrated and cleaned, non-gated frames. The extremely high disturbance
prevents to retrieve any hardware injection.
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at the respective sky position. In this way it is possible to see, in only one plot for
each test, how many injections have been spotted.

From the comparison study between O2 and O3 it appears that either the injected
amplitudes were too low for the radiometer analysis or the noise disturbances in
the O3 data prevent to retrieve correctly the hardware injections, and is giving
troubles also for software injections.

A last test has been performed using the parameter file and executable used for
the O2 test, but with O3 frames with no gating procedure. We chose to select the
same kind of frames used for the O2 analysis, that is just with standard calibration
and cleaning process. Unfortunately this test showed that this dataset cannot be
used for this study, as shown in Figure 3.14: a very strong disturbance populates the
frequencies up to ∼ 500 H, making impossible to retrieve any hardware injections.

Looking forward to the upcoming fourth observational run (O4), the expected
behavior of hardware injections needs to be thoroughly studied.

3.2.3 Binaries

So far, we have considered only isolated neutron stars in our tests. Since, of the
∼ 3000 observed pulsars, roughly half of them is located in binary systems (ATNF,
2021), there is the concrete possibility that an unknown source would orbit with a
companion star. It is important then to analyze what happens when we want to
retrieve binary signals with the radiometer search.

As shown in Leaci et al., 2017, the spectrum energy of an emitting neutron star
in a binary system is spread over a certain frequency range by the orbital Doppler
effect, in a characteristic double-horn shape. In Fig. 3.15 we report an example of
how a simulated binary signal appears, with a modulation of ∼37 mHz, after the
application of a series of filters to enhance the spectral amplitude distribution as a
function of frequency (see Leaci et al., 2017 for more details).

The maximum Doppler shift caused by the orbital motion depends on the source
Keplerian parameters Leaci et al., 2017:

Figure 3.15: Figure from Leaci et al., 2017 showing the output of a couple of ad hoc
built filters applied to the power spectral peak frequencies, expressed as Ww/W .
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Figure 3.16: Results from the test using simulated signals in binary systems. Two of
the retrieved signals are zoomed as an example, showing the frequency profile of the SNR
of the injected signal. As expected, we show in the zoomed panels the Doppler shift of
four bins coming from the chosen parameters and the double-horn feature is visible.

∆fM =
2πap

Torb(1− e)
, (3.31)

where we have: ap = a · sin ι/c as the projected semimajor axis, with a being the
orbit semimajor axis and ι the inclination angle of the orbit; Torb as the orbital
period and e the orbital eccentricity.

Using this formula we can compute the maximum range of frequencies over
which a signal will be spread by the Doppler effect. Exploiting that, a set of four
injection has been generated choosing the orbital parameters to reproduce a Doppler
spread of four times the typical radiometer search bin of 1/32 Hz.

Four well distanced frequencies and sky points have been chosen for the signal
simulation study. After that, the parameters ap and Torb have been chosen to obtain
a signal spread over four frequency bins for each of them (for the sake of simplicity
we consider circular orbits, e = 0). To limit the choice of the two parameters to
a reasonable range, values of ap ∈ [1, 3] s and Torb ∈ [10, 48] h (Leaci et al., 2017)
have been considered. The signals have been simulated and injected on O2 real
data, together with three isolated signals for comparison.

From the tests done, we see that the power of the binary signals is distributed
over the expected number of bins, causing a reduction of the SNR we would obtain
with respect to signals with the same amplitude, but coming from isolated sources.
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Even though this implies that it is more difficult to detect a source in a binary
system, looking at the plot in Fig. 3.16, we note that given the shape of the signal
profile, the signal power is not evenly spread and that holds also for the SNR.
Even if we have spread the binary signals over four bins, the power of the higher
horn of the profile still reaches SNRs similar to those of the isolated signals we
have injected, which had only half the amplitude.

Nevertheless, to properly see the injected signals above the noise fluctuations,
we have injected amplitudes much higher than the ones we expect to detect. This
implies that in real situations it will be difficult to see the full profile of a signal.

Another consideration regards the possibility that a source would have orbital
parameters producing a maximum modulation that, with the used frequency res-
olution, will result in a signal that would split only over two frequency bins. In
this case it might be difficult to distinguish the binary signal from an isolated one
as the shift of two frequency bins could be caused also by the spindown or the
Earth Doppler effect. Increasing the frequency resolution would help to resolve the
modulation profile, but it will result in a lowered retrieved SNR because the signal
will be spread over more bins.

3.2.4 The radiometer continuous-wave follow-up

Once properly understood how the radiometer search works in various situations,
we can move to the final step of the project, regarding the follow-up of the outliers
selected from the all-sky search.

As explained in Sect. 3.1.7, the HEALpix grid, in the analysis with PyStoch,
does not match with the grid defined in the FrequencyHough pipeline: not only the
shape is different, but since the FrequencyHough grid resolution depends on the
frequency, the resolutions of the two grids can have a big mismatch.

Taking the coordinates of a PyStoch candidate, a HEALpix cell is identified and
needs to be completely covered by the follow-up analysis: to avoid to miss a signal,
we need to be sure that we are able to fully cover the identified cell with the proper
FrequencyHough sky grid. The procedure to achieve this is the following:

• for each radiometer outlier, the coordinates of the center of the cell are used to
retrieve the first HEALpix grid neighbors, by using the HEALpy (The HEALpy
contributors, 2022) Python library. In this way, as it is shown in Fig. 3.17 by
the blue dots, we can define a safe area containing the signal, covering the
HEALpix cell of the outlier plus a portion of all neighboring cells around it;

• using HEALpy, the maximum distance between the given point and their first
neighbors is computed, defining a circle that covers the above defined area
where we want to search the signal with the FrequencyHough;

• with a function of the SNAG toolbox (Frasca et al., 2018), the FrequencyHough
grid for a given frequency, centered in a sky point and with a given angular
distance can be created, as shown in Sect. 2.2.1. Using the radius obtained
using HEALpy, the grid is created for the frequency of the outlier.

An example of this procedure is shown in Fig. 3.17.
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Figure 3.17: Example of FrequencyHough grid for two example PyStoch outliers at
frequency 216.16 (left) and 129.02 (right). The HEALpix cell we have chosen is identified
by a black dot, the first neighbors are shown in blue and the maximum distance between
the outlier and its neighbors has been used to draw a red ellipse around the outlier, which
covers the area we have to analyze. The FrequencyHough grid, generated with the source
parameters and completely covering the found area is plotted with red dots.

Now we can launch the FrequencyHough analysis for every radiometer candidate,
over its own sky grid and on a given portion of the peakmap around the candidate
frequency (let us say of 1 Hz). The range of spindown can be arbitrarily chosen,
but the natural choice is to keep the range used for the O2 and O3 all-sky analyses
(see Sect. 2.3.2 and R. Abbott et al., 2022a). An example is shown in Fig. 3.18.

Following the same procedure explained in Sect. 2.2, we can reach the sensitivity
of standard all sky analysis in the portion of the parameter space we selected.

The number of produced outliers in the all-sky radiometer analysis (see Sect.
3.1.7 and R. Abbott et al., 2022c is around 500. Building the sky grids with the
procedure described above for each outlier, the total number of searched sky points
would be ∼ 8× 105. Keeping the same data structure used for the O3 analysis, as
shown in Sect. 2.2, we have an estimated total time for the FrequencyHough selection
of candidates from the radiometers outliers of ∼ 103 GPU hours (∼ 1.5 months),
that is roughly the 1.3% of the time needed to perform the full FrequencyHough
all-sky analysis.

Nevertheless, the selection of 1 Hz portion from the pre-defined peakmaps with
bandwidth of 5 Hz (1 Hz for 10 ≤ f ≤ 128 Hz) results in a strong inefficiency. A
very useful tool is in this case the Band-Sampled-Data (BSD) data system shown
in Sect. 2.2 (O J Piccinni et al., 2020). Using the BSD we can build customized
peakmaps, not only with the needed frequency range, but also defining a proper
coherence time specific for each outlier frequency, as opposite to the fixed coherence
time broadly used for the FrequencyHough all-sky analysis. The possibility to
increase the coherence time of the short-Fourier transforms used to build the
peakmaps will grant an improvement in sensitivity. The implementation of the
BSD GPU-FrequencyHough code will be reported in an upcoming paper.
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Figure 3.18: Example of an all sky search on a software injection on real data. The
signal is from an isolated source with no spindown, frequency 133.34 Hz, equatorial
coordinates (120°,−15°) and amplitude h0 = 3.5 × 10−25. In the top plot we show the
sky map generated by PyStoch at the injection frequency bin: the candidate appears as
brighter regions of the sky around the source coordinates. In the bottom panels we plot
the maps generated by the FrequencyHough transform, applied to peakmaps created from
the O2 LIGO-H and LIGO-L detectors time series with the simulated signal injected,
Doppler-corrected for the source coordinates.



Conclusions

The content of the current thesis shows that, even with well established data
analysis algorithms, there is still large space for improvement, both developing
new methods and using new programming techniques to have better performances,
computing efficiency and increased search sensitivity.

Thanks to the GPGPU approach, it has been possible to use GPUs for all-sky
continuous-wave searches, with a programming high-level effort that focused only
on the code efficiency via the vectorization of the data. In this way, it has been
possible to successfully exploit the parallel computing in which the GPUs are highly
optimized, and achieve a very significant analysis speed-up, which could reach
computing times of one order of magnitude smaller than the standard search (B. P.
Abbott et al., 2019b; R. Abbott et al., 2022a; La Rosa et al., 2021). Thanks to
this porting, it has been possible to run the analysis for the 75% of the frequency
detector sensitivity interval for the O3 search in a couple of weeks rather than
in a few months with a comparable amount of computing nodes, provided the
availability of a modern GPU cluster like the Cineca Marconi100 (Cineca, 2021).

The same approach could be in principle applied to other search algorithms,
given that it is expected that the trend of exponential growth of the capabilities of
GPUs will continue, following also the growing interest in GPU computing across
several different scientific and industrial fields. Porting of pipelines on GPUs, if they
are adaptable to the vectorial data flow paradigm, is already showing to be very
promising in various searches, and in future it can help the physics of gravitational
waves on many different sectors, especially in data analysis.

One of the main elements that make the all-sky searches for rotating neutron
stars difficult, from the computational point of view, is the large search parameter
space size. Even with semi-coherent (B. P. Abbott et al., 2017a) approaches, this
will be still challenging as — due to the Doppler effect— we are forced to analyze
one by one all sky directions that are defined by a grid covering the whole sky.
Since the number of points of the grid is very high, this brings to analyses that
take ∼ 105 single-device computation hours to be completed, even with the code
running on GPUs, as it has been shown in Sect. 2.3.2.

We have seen, however, that in the framework of the stochastic gravitational-
wave background searches, the radiometer method can run unmodeled analyses very
efficiently over the full sky, behaving like a tomography of the sky and producing
SNR maps through the search frequency band. This method has been used in
recent years to search for point-like sources, and produced upper limits for persistent
signals from neutron stars, that are approximately one order of magnitude higher
than those we can obtain with dedicated continuous-wave searches.
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Since the radiometer search may produce a large set of outliers, which have
never been followed up so far with specific continuous-wave procedures, in future it
will be very useful to apply the follow-up method that is described in Sect. 3.2.4
to all-sky radiometer outliers (R. Abbott et al., 2022c). The outcomes will be
published in an upcoming paper. Thanks to the radiometer analysis, we can identify
very quickly portions of the parameter space of interest. Due to the optimized
GPU FrequencyHough algorithm, ad hoc analyses for the radiometer outliers can
be performed. Given a candidate frequency, we can create customized peakmaps
centered on it in the BSD framework (O. Piccinni et al., 2018). Defining a proper
grid around the candidate sky coordinates allows one to explore a reduced portion of
the sky producing a set of FrequencyHough candidates, which are in turn followed-
up using the procedure described in Sect. 2.2. In this way we are able to verify
thoroughly the selected candidates, and eventually put upper limits, which would
be more stringent than those obtained by the sole radiometer search, which are
compatible with those of all-sky continuous-wave analysis, but with a reduced delay
and computational effort.

In particular, for the upcoming fourth observational run of the LIGO-Virgo-
KAGRA collaborations, it will be possible to have quick results on wide portions of
the parameters space via the radiometer search, far before the all-sky continuous-
wave analysis is completed. Furthermore, with the combination of the two projects I
have carried on, the search parameters space can be expanded without a significant
increase of computational cost. An example regards to take into account more
frequency derivatives, either enlarging the related search range or adding the second
order spindown parameter.

Another promising direction that has been opened by the present work is the
study of neutron stars in binary systems, for which a dedicated follow up needs to
be tailored. However, it has been shown that the radiometer search can reproduce
the signature of an emitting binary system, assuming to have good sensitivity and
frequency resolution.

The achievements obtained with the thesis projects, together with the good
prospects of further improvements in the near future, both for the algorithms
and detector sensitivity, might give a timely contribution to the first detection of
continuous gravitational-wave signals.
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