### Introduction to CBC Science

Meg Millhouse, Georgia Tech

GW Open Data Workshop, May 12 2025







Compact objects: high mass-to-radius ratio

Very compact objects lead to more extreme curvature of space-time

Less compact — More compact



Compact objects: high mass-to-radius ratio

#### Neutron Stars

- Formed by the collapse of a massive star  $(\sim 10-20 {\rm M}_{\odot})$
- Density higher than atomic nucleus -> mostly made of neutrons



Compact objects: high mass-to-radius ratio

#### Black holes

- So compact that even light cannot escape the extreme spacetime curvature
- •Masses span many orders of magnitude



\*radii not to scale

Compact objects: high mass-to-radius ratio

#### Black holes

- LIGO-Virgo-KAGRA sensitive to *stellar mass* black holes
- Formed from collapse of a massive (  $\gtrsim 20 M_{\odot}$  ) star (mostly!)







## Anatomy of a waveform



#### Anatomy of a waveform



#### Waveform encodes data about:

- compact object *masses*
- Compact object spins
- NS tidel deformability
- Distance to binary system
- Orientation of orbit

See Daniel's talk tomorrow

#### CBC Detections

- GW150914: the very first detection!
  - Hanford and Livingston
  - $\begin{array}{c} \bullet \ 36 M_{\odot} 29 M_{\odot} \\ \text{system} \end{array}$



#### CBC Detections



#### Masses in the Stellar Graveyard





• Find a population model that describes observed masses

Do we find objects in the theoretical mass gap?





Minimum BH mass?





How are CBCs formed?





Spin-orbit misalignment

#### Extreme Matter



- Binary neutron stars offer an opportunity to study how matter behaves at extreme densities
- What is the equation of state?
  - Soft EoS: smaller radii, less deformable
  - Stiff EoS: larger radii, more deformable



#### Extreme Matter

- Observe EM and GW signals from the same system
- GW170817:
  - Gamma ray burst
  - Kilonova
- Source of many heavy elements!



## Cosmology

Measure the expansion of the universe with the Hubble constant

luminosity distance from GW

$$z = H_0 - \frac{d}{c}$$
 redshift from EM



#### Are our GR-based models correct??

- Residual SNR
- Inspiral-merger-ringdown consistency
- Speed of gravity

#### Are our GR-based models correct??

- Residual power
- Inspiral-merger-ringdown consistency
- Speed of gravity



LVK arXiv:2112.06861

#### Are our GR-based models correct??

- Residual power
- · Inspiral-merger-ringdown consistency
- Speed of gravity



#### Are our GR-based models correct??

- Residual power
- Inspiral-merger-ringdown consistency
- Speed of gravity



NASA's Goddard Space Flight Center, Caltech/MIT/LIGO Lab and ESA









### Summary

- O1 through O3 gave us >90 CBC detections
- Enabled new science including:
  - How stars die and form binaries
  - How matter behaves at the most extreme densities
  - If GR is the correct model of gravity
- O4 ongoing, new results to be reported this year
  - Look forward to more CBCs and more science!

