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* What are the main responsibilities of the Detector Characterization group?

 Gravitational-wave detector strain data:

* Time Domain
* Frequency domain (PSD/ASD)
* Time-Domain (Post-Processing: Whitening, Filtering)

* Gravitational-Wave Detector Noise:
* Persistent or slowly time-varying noise signals (lines)
* Transient noise signals (glitches)
* Auxiliary Channels
e Data Quality Products

* O4a Summary



What are the main responsibilities of the DetChar group?

The Detector Characterization (DetChar) group focuses on both

instrumentation and data quality - investigating the detectors to identify
and mitigate noise sources, and providing data-quality information to A
support gravitational-wave searches and the validation of candidate ;jé‘\
A DA
events. XX
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[1] and [2] are adapted from Soni et al. (2025) and Abbott et al. (2017), respectively.




Gravitational-Wave Detector Data: Strain (Time Domain)

Gravitational-wave strain amplitude :
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Gravitational-Wave Detector Data: Strain (Frequency Domain)

Data in time domain:
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The Power Spectral Density (PSD) of the data - and its square root, the Amplitude

Spectral Density (ASD),

evaluated over long time periods - characterizes the noise

spectrum of a gravitational-wave detector, which is limited by various noise sources.



Gravitational-Wave Detector Data: Strain (Frequency Domain)

Comparison of the noise ASDs of the LIGO detectors during O3b and O4a
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[1]: Soni et al. (2025)




Gravitational-Wave Detector Data: Time-Domain (Post-Processing)
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Categories of Gravitational-Wave Detector Noise



Gravitational-Wave Detector Noise Sources: Lines

Persistent (or slowly time-varying) artifacts are usually referred to as lines.
These features increase the noise amplitude at certain frequencies and can impact continuous-wave

searches.
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Gravitational-Wave Detector Noise Sources: Glitches

Short-duration artifacts are usually referred to as glitches.
They increase the background noise, impacting transient gravitational-wave searches. Glitches may also affect

parameter estimation, overlap with, or even mimic real gravitational-wave signals.
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Omicron is the main tool used to ; 0%
search for excess powerin the data, o
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Gravitational-Wave Detector Noise Sources: Glitches
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How are glitches usually studied?




Spectrograms

* We’ve seen the data in the time and frequency domains - now, let’s put them together in the
form of spectrograms.
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The Q-transform
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Q-values

* How do the Q-values affect the morphology of the signal? AfO

Q~5 Q~30
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Auxiliary Channels (Information from Various Sensors)

Why does DetChar perform all this analysis? To help investigate the sources of glitches and lines.

Examples of tools to analyze
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[5] and [6] are from Smith et al. (2011) and Debasmita et al. (2025), respectively.



Data Quality Products

The DetChar group analyzes potential issues in the data, defining segments to be vetoed. These
vetoes are categorized according to the severity and understanding of the underlying problems:

» CAT1: Indicates periods with technical problems or critical issues involving key detector
components not operating in their nominal configuration.

» CAT2: Marks times with known noise couplings to the strain channel — for example, due to high
ground motion or environmental disturbances.

» CAT3: Flags times with statistical correlations between the strain and auxiliary channels, where
the couplingis not fully understood.

REF: Abbott, R. et al. (2023). Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO.



O4a Summary

Gravitational-Wave Observatory Status

Please select a date from the calendar above to see archived or current status. O I a S u I I I I I l a ry

Information is available for dates after November 30, 2016. The Advanced LIGO and Virgo detectors have begun the third part of
the fourth observing run, known as 04c, as of January 28, 2024. The entry of the KAGRA detector into O4c has been postponed
in order to continue detector commissioning activities and further increase the sensitivity of the detector. All detectors are
planned to rejoin 04 by the end of the run. Summaries of the current observing run and previous observing runs are available in
the menu above. For overviews of LIGO, Virgo, and KAGRA observing runs, see the arXiv:1304.0670.

Network duty factor
[1368975618-1389456018]
M Double interferometer [53.4%]
M Single interferometer [29.7%]
M No interferometer [16.6%]

* Today's Summary Page

Current Status (GWISTAT)

LIGO/Virgo Alerts (GraceDB)

Hanford alog — Livingston alog — Virgo logbook — KAGRA klog
LIGO Laboratory — Virgo — KAGRA Observatory — GEO600

180- Binary neutron star inspiral range . Single-interferometer observing segments
e | O4a Significant Detection Candidates:
g 81 (92 Total - 11 Retracted)
II.II“M'III]II“ ﬂl””l O4b Significant Detection
g _ B2 . | Al | | Candidates: 105 (114 Total - 9 Retracted)

Time [weeks] from 2023-05-24 15:00:00 UTC (1368975618.0) Time [weeks] from 2023-05-24 15:00:00 UTC (1368975618.0)




Thank you!
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