Data visualization for narrow spectral artifact studies in LIGO data

- Background: continuous gravitational waves & narrow artifacts
- Time scales 101: slicing up the data
- Spectra and spectrograms
- Time scales 102: beware the average!
- Annotating spectra
- Tracking combs
- Tracking groups of lines
- Monitoring lines in general

- Background: continuous gravitational waves & narrow artifacts
- Time scales 101: slicing up the data
- Spectra and spectrograms
- Time scales 102: beware the average!
- Annotating spectra
- Tracking combs
- Tracking groups of lines
- Monitoring lines in general

Background - continuous waves

Credit: A. Stuver / LIGO Scientific Collaboration

Credit: Sonya Neunzert

Optical: NASA/HST/ASU/J. Hester et al. X-Ray:4 NASA/CXC/ASU/J. Hester et al.

Background - narrow spectral artifacts

Searching for signals that are narrow in frequency → we care about noise that is narrow in frequency!

LIGO Detector Characterization in the first half of the fourth Observing run, Soni et al, 2024

- Background: continuous gravitational waves & narrow artifacts
- Time scales 101: slicing up the data
- Spectra and spectrograms
- Time scales 102: beware the average!
- Annotating spectra
- Tracking combs
- Tracking groups of lines
- Monitoring lines in general

Time scales 101: slicing up the data

Greater SFT length → better spectral resolution

Greater number of SFTs per averaged spectrum → better statistics

Shorter total time per averaged spectrum → better time resolution

SFT = "short"
Fourier
transform (e.g.
30 minutes of
data)

One averaged spectrum (in this case 1 week) includes many SFTs.

Both narrow and broad features can be seen.

- Background: continuous gravitational waves & narrow artifacts
- Time scales 101: slicing up the data
- Spectra and spectrograms
- Time scales 102: beware the average!
- Annotating spectra
- Tracking combs
- Tracking groups of lines
- Monitoring lines in general

https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=82632

Color bar adjustments may be needed to see strong & weak features simultaneously

Spectrum	Spectrogram
☑ Better for making peak height comparisons	Color bar not ideal for peak height comparisons
☑ Better for seeing fine details alongside large artifacts	Color bar not ideal for covering many orders of magnitude in peak height
✓ Can make a full-run spectrum	Requires multiple T_avg time periods to be meaningful
Can make interactive plots over a larger frequency span	Interactive plots over a large frequency span are slow
Can't see time evolution	✓ Can see time evolution

- Background: continuous gravitational waves & narrow artifacts
- Time scales 101: slicing up the data
- Spectra and spectrograms
- Time scales 102: beware the average!
- Annotating spectra
- Tracking combs
- Tracking groups of lines
- Monitoring lines in general

Time scales 102: beware the average!

Time scales 102: beware the average!

Disappears from 1058 Hz...

... and appears at 1028 Hz on the same day

Time scales 102: beware the average!

Run-averaged spectrum (T_avg for black curve = entirety of O4a & b, T_avg for orange curve = entirety of O4a)

- Background: continuous gravitational waves & narrow artifacts
- Time scales 101: slicing up the data
- Spectra and spectrograms
- Time scales 102: beware the average!
- Annotating spectra
- Tracking combs
- Tracking groups of lines
- Monitoring lines in general

Spectra are complicated!

Here's a plot of the O3 run-averaged spectrum between 10 and 100 Hz (about 1/20th of the spectral range over which we attempt to characterize narrow artifacts).

Every dot is an labeled line.

Spectra are complicated!

Here's a plot of the O3 run-averaged spectrum between 10 and 100 Hz (about 1/20th of the spectral range over which we attempt to characterize narrow artifacts).

Every dot is an labeled line.

Spectra are complicated!

Here's a plot of the O3 run-averaged spectrum between 10 and 100 Hz (about 1/20th of the spectral range over which we attempt to characterize narrow artifacts).

Every dot is an labeled line.

- ☑ [NEW 20231227] Tooth of the 23.8093;11.9044 Hz comb.
- ⊕ [NEW 20231227] Tooth of the 29.96951;0 Hz comb
- [NEW 20231227] Tooth of the 6.97794;0 Hz comb
- ▲ [NEW 20231227] Tooth of the 9.474301;0 Hz comb
- [NEW 20231227] Tooth of the 9.474303;0 Hz comb
- △ [NEW 20231227] Tooth of the 9.47546;0 Hz comb
- [NEW 20231227] Tooth of the 9.48056;0.0006 Hz comb
- ★ [NEW 20231227] Tooth of the 9.480652;0 Hz comb
- o all other entries

- What we needed:
 - Quickly zoom to any level of detail
 - Display details in hover text
 - Label points & regions
 - Flexible color-coding options
- Solution:
 - Custom plotting tool built into Fscan (written in Python)
 - https://pypi.org/project/fscan/
 - https://git.ligo.org/CW/instrumental/fscan/
 - Based on bokeh interactive plotting library, http://bokeh.org/

- Background: continuous gravitational waves & narrow artifacts
- Time scales 101: slicing up the data
- Spectra and spectrograms
- Time scales 102: beware the average!
- Annotating spectra
- Tracking combs
- Tracking groups of lines
- Monitoring lines in general

LIGO Detector Characterization in the first half of the fourth Observing run, Soni et al, 2024

- What we needed:
 - Track the general behavior of the comb at a glance
 - See the individual peak behavior as needed
 - Don't get confused by changes in the spectral background
 - Handle combs that move/shift around

Solution:

- More bokeh plots :)
- Tool dependent on Fscan, but not (yet?) built into it
- https://git.ligo.org/CW/instrumental/line-investigations/-/blob/ma in/ansel-scripts/whenwhere.py

- Background: continuous gravitational waves & narrow artifacts
- Time scales 101: slicing up the data
- Spectra and spectrograms
- Time scales 102: beware the average!
- Annotating spectra
- Tracking combs
- Tracking groups of lines
- Monitoring lines in general

Tracking groups of lines

Not actually a spectrogram – frequency axis is not continuous (or even necessarily monotonic).

Result of clustering lines by the similarity of their time evolution histories.

Image credit: Tyra Collier, Autumn Marceau (UW Bothell)
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=79825

- Background: continuous gravitational waves & narrow artifacts
- Time scales 101: slicing up the data
- Spectra and spectrograms
- Time scales 102: beware the average!
- Annotating spectra
- Tracking combs
- Tracking groups of lines
- Monitoring lines in general

Monitoring line behavior in general

What we need:

- Catch unexpected changes in the noise
- Alert viewers when noise increases

Solution:

- Under the hood: line counter (also used for automated comb identification)
- Static plots on Fscan daily pages, for use by data quality shifts

Sample Fscan

Monitoring line behavior in general

Questions? Comments?