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Background

CENPA: center for

Experimental Nuclear
Physics and Astrophysics

What we do:

 Fundamental
Gravity
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Fundamental Gravity Experiments: | #{=eme

Torsion Balances

Pendulum with two masses
suspended from a fiber >
Spring mass system

«  Fiber has a very weak spring constant
to allow for very precise measurements

Measures torque produced by a
field interacting with a dipole*

Invented by Coulomb

* Used in the Cavendish experiment to
measure the force of gravity

« Used in Eotvos Experiment in late 1800s
to ‘prove’ equivalence principle

Usually measure changing angle
with an autocollimator

torsion
balance from
~1780

%

Positioning Stage

Thermal Enclosure

Ion Pump
(0.2 mPa)

A modern
torsion
balance from
our lab!

Air-bearing Turntable
(0.46 mHz)

Swing Damper

Torsion Fiber
(22-pm thick quartz)

Autocollimator
(10 nrad sens.)

Magnetic Shield

[, Gravity Gradient
.. Compensation




Fundamental Gravity Experiments:
Torsion Balances

Very difficult to measure gravitational
force precisely
 Mu-metal shielding
« Gold coat pendulums
 Silica fiber (for some experiments) : :
. Torsion balance experiments
 Lots of environmental sensors can take a long time! o

What we measure:

- Equivalence Principle Test (Paper coming
soon!)

- Ultra-light Dark Matter search (Paper also
coming soon!)

- Short-Range gravity
- 5th force tests
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Calibrating LIGO via gravity
Rotor with rotating tungsten masses cause

gravitational force on LIGO test masses

Currently have one rotor installed at LHO
(EndX) and successfully injected force during O3

- Initial Results yielded ~1% absolute calibration:
https://arxiv.org/abs/2107.00141

New design has four rotors placed f| [ - W
around the test Mass [%\ iy
- Expected to reach ~0.1% uncertainty: P2200021

- Skylar Kemper (Masters student) working on Planned new
new design NCal design



https://arxiv.org/abs/2107.00141
https://dcc.ligo.org/LIGO-P2200021

LIGO:
Rotation Sensors

LIGO uses a lot of seismometers for
active seismic isolation

Issue: (horizontal) seismometers
don’t work when they experience tilt
- Detects tilt as horizontal motion

High winds - lots of ground rotation
- seismometers not working >
interferometer can’t lock - can’t
observe

Solution: Build dedicated rotation
sensor

- test mass

(b)

--=-BSC-ISI~_ _

Suspended _

Reference
Mass

Image from: Fabrice
Matichard, Matthew Evans;

Review: Tilt-Free Low-Noise

Seismometry



https://doi.org/10.1785/0120140200
https://doi.org/10.1785/0120140200

Optical Path
: End Mass

LIGO: JEN
Rotation Sensors

Flexure

« BRS—Beam Rotation Sensor

* 1-m long beam with
autocollimator readout

« ~7mHz resonance frequency
- Measures ground tilt to nrad

level

* Proof Mass (beam) Suspended
via two Be-Cu flexures (~12-18
pm)

6 total installed in LIGO (4 in
Livingston, 2 in Hanford)

Flexure
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Working with seismologists to use BRS:
the BRS data to look at various

events Seismology Sidebar

e Local motion Ry —
- Earthquakes
- Tornados L
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LIGO:
Rotation Sensors

CRS—Cylindrical Rotation Sensor

Compact version (30cm cylinder) to go
on ISl

Transportable!

~18mHz resonance frequency
Currently being machined
Testing at MIT in September

Inertial Proof-Mass

Flexure

Interferometer

Planned install before O5

To be built for Virgo




Optical Readout
(HoQls)

« Homodyne Quadrature
Interferometer (HoQl) [arXiv: 1710.0593]

- Developed at Vrije Universiteit

Amsterdam & University of
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Fibre-coupled Polarisation Key
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https://arxiv.org/pdf/1710.05943.pdf

Noise Results

c V1@ UW, V2@ CIT (x2)
 Reaches peak sensitivity of ~5 prad
« Caltech CRS matches UW
. CIT|[Online] vs. UW Noise
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LIGO: i
Rotation Sensors ?

X XX X X XXXXXXXXXXX XXX XXX XXX XXX
 NRS—Newtonian Rotation Sensor XXCXEXEXEX XXX XXX XXX XXX X
. . . XX X X X X X X X XX XXX XXX XXX
- Rotation sensor built to measure Newtonian
Noise _
. Newtonian Noise is caused by acceleration | /Acceleration on Test Mass Due toNN: - - -
on the Test Masses due to a fluctuating . oz HEOS
. . . ) t)= 216G —hk ; i(k-0p—wt) ..
gravitational field a(ro,t)=2mGpo ye™"{ze ¢ (lSTl(cb)
- For above ground detectors (LIGO, CE, etc.),
main source of NN is seismic (Rayleigh)
waves Tilt due to Rayleigh Wave:
-  Newtonian Noise from Rayleigh waves can (9, 1) = i k £,e'(¥e=9) cos(¢h)

be derived from their tilt!

* Proposed in 2016 with previous rotation
sensor UNIVERSITY of WASHINGTON


https://iopscience.iop.org/article/10.1088/0264-9381/33/23/234001/pdf

LIGO:
Rotation Sensors

« NRS—Newtonian Rotation Sensor

- Small enough to fit below the Test
Mass chambers (~3/4 of CRS)

- Higher relevant resonance frequency
(10-30Hz)>allows for smaller Proof
Mass and thicker flexures (12-18 ym
- 18-30 um)

* Prototype currently being
tested/developed at UW

* Plan: Test at Hanford next year!
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