University of Washington, Seattle Eöt-Wash Group Overview

Shoshana K. Apple

GWANW June 2025

UNIVERSITY of WASHINGTON

Eöt-Wash Group

Background

- **CENPA:** Center for Experimental Nuclear Physics and Astrophysics
- What we do:
 - Fundamental Gravity Experiments
 - LIGO Instrumentation

Fundamental Gravity Experiments: Torsion Balances

- Pendulum with two masses suspended from a fiber → Spring mass system
 - Fiber has a very weak spring constant to allow for very precise measurements
- Measures torque produced by a field interacting with a dipole*
- Invented by Coulomb
 - Used in the Cavendish experiment to measure the force of gravity
 - Used in Eötvös Experiment in late 1800s to 'prove' equivalence principle
- Usually measure changing angle with an autocollimator

A diagram of Coulomb's torsion balance from ~1780

A modern torsion balance from our lab!

Fundamental Gravity Experiments:

Torsion Balances

- Very difficult to measure gravitational force precisely
 - Mu-metal shielding
 - Gold coat pendulums
 - Silica fiber (for some experiments)
 - Lots of environmental sensors
- What we measure:
 - Equivalence Principle Test (Paper coming soon!)
 - Ultra-light Dark Matter search (Paper also coming soon!)
 - Short-Range gravity
 - 5th force tests

Current NCal design

Newtonian Calibrator

Calibrating LIGO via gravity

LIGO:

- Rotor with rotating tungsten masses cause gravitational force on LIGO test masses
- Currently have one rotor installed at LHO (EndX) and successfully injected force during O3
 - Initial Results yielded ~1% absolute calibration: <u>https://arxiv.org/abs/2107.00141</u>
- New design has four rotors placed around the test Mass
 - Expected to reach ~0.1% uncertainty: P2200021
 - Skylar Kemper (Masters student) working on new design

Planned new NCal design

Rotation Sensors

- LIGO uses a lot of seismometers for active seismic isolation
- Issue: (horizontal) seismometers don't work when they experience tilt
 → Detects tilt as horizontal motion
- High winds → lots of ground rotation
 → seismometers not working →
 interferometer can't lock → can't
 observe
- Solution: Build dedicated rotation sensor

LIGO: Rotation Sensors

- BRS—Beam Rotation Sensor
 - 1-m long beam with autocollimator readout
 - ~7mHz resonance frequency
 - Measures ground tilt to nrad level
 - Proof Mass (beam) Suspended via two Be-Cu flexures (~12-18 µm)
 - 6 total installed in LIGO (4 in Livingston, 2 in Hanford)

- Working with seismologists to use the BRS data to look at various events
 - Local motion
 - Earthquakes
 - Tornados
 - Storms
 - Etc.
- Might turn into a larger project

BRS:

Seismology Sidebar

Rotation Sensors

- CRS—Cylindrical Rotation Sensor
 - Compact version (30cm cylinder) to go on ISI
 - Transportable!
 - ~18mHz resonance frequency
 - Currently being machined
 - Testing at MIT in September
 - Planned install before O5
 - To be built for Virgo

Optical Readout (HoQIs)

- Homodyne Quadrature Interferometer (HoQI) [arXiv: <u>1710.0593</u>]
- Developed at Vrije Universiteit Amsterdam & University of Birmingham

$$\frac{P_{PD1} - P_{PD2}}{P_{PD1} - P_{PD3}} = \tan(\Delta\phi)$$

Noise Results

- V1 @ UW, V2 @ CIT (x2)
- Reaches peak sensitivity of ~5 prad
- Caltech CRS matches UW

Rotation Sensors

- NRS—Newtonian Rotation Sensor
 - Rotation sensor built to measure Newtonian Noise
 - Newtonian Noise is caused by acceleration on the Test Masses due to a fluctuating gravitational field
 - For above ground detectors (LIGO, CE, etc.), main source of NN is seismic (Rayleigh) waves
 - Newtonian Noise from Rayleigh waves can be derived from their tilt!
 - Proposed in <u>2016</u> with previous rotation sensor

UNIVERSITY of WASHINGTON

Rotation Sensors

- NRS—Newtonian Rotation Sensor
 - Small enough to fit below the Test Mass chambers (~3/4 of CRS)
 - Higher relevant resonance frequency (10-30Hz)→allows for smaller Proof Mass and thicker flexures (12-18 µm → 18-30 µm)
 - Prototype currently being tested/developed at UW
 - Plan: Test at Hanford next year!

Thank You

