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Gamma-Ray Bursts (GRB)

e Detect about 1/day
e Some of the most energetic events in the universe

e Two populations in T,, and spectral hardness
o  Suggests two types of sources Component

e Used as triggers for targeted gravitational wave Ty oo e
searches

Binary Neutron Star Merger Collapsar
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Collapsars

e Believed to be massive, rapidly
rotating stars

Jet collides with
ambient medium

Colliding shells emit gamma rays
(internal shock wave model)

e \When star’s life ends, likely
supernova and emits gamma ray
burst along rotational axis while
core collapses to compact object

Black hole
2 low-energy (< 0.1 GeV) to
engine high-energy (to 100 GeV)

(neutron star or black hole) prompt
| |
e Jet powered by mass accreting Feen
on tO Central engine and being [NASA/Goddard Space Flight Center/ICRAR]
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Gravitational Waves
From Collapsars

Gravitational instabilities
and cooling create over
densities or clumps in
accretion disks

Under the right
conditions, compact
objects may form in
collapsar disks

[B.D. Metzger et al 2024 ApJL 971 L34]
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https://iopscience.iop.org/article/10.3847/2041-8213/ad697c
https://iopscience.iop.org/article/10.3847/2041-8213/ad6990

X-Pipeline: Targeted GW Burst Search

e Black hole-neutron star signal injected and
e Uses sky position GRB to do coherent recovered using X_pipe“ng J

gravitational wave search

e Searches for loudest 1% of pixels in
coherent spectrogram. Calculates
probability each pixel cluster is
astrophysical

e Because X-pipeline is an unmodeled
search, it doesn'’t tell us much about
the source of the gravitational waves

time (sec)

[P_Sutton et al 2010 New J. Phys. 12 053034]



https://iopscience.iop.org/article/10.1088/1367-2630/12/5/053034

In the event of a gravitational wave detection coincident
with a collapsar, what can we say about the source?



Toy Model: Sub-Solar Mass Neutron Stars in Disk
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e Photodisintegration of helium can be a dominant cooling mechanism of the
disk at around ~50 R

e This could potentially give rise to an overdensity collapsing into a sub-solar
mass neutron star

Schwarzschild



Toy Model: Sub-Solar Mass Neutron Stars in Disk

Q) - angular frequency

Fragment migration: @ — —T(L + i)

MChilrlo - chirp mass

(m1m2)3/5/(m1+m2)1/5
a - viscosity parameter

n = H/ror thickness of

GW timescale: Accretion disk timescale: : )
1 torus accretion disk
" . 5) (GMchirpQ) —5/3 TP
“W 640 c3 Y an?Q



Example Waveform

e 10 MQbIack hole, 0.5 M@
fragment, 20 kpc away, n = 0.6
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e Start fragment at 50 R

Schwarzschild

e Track evolution until it reaches
Roche lobe radius (fragment is
tidally disrupted)

e Calculate gravitational wave
emission
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Next Steps

e Inject example waveforms into X-pipeline to measure sensitivity
e Feed the model into parameter estimation tool (Bilby)
e Assume normal CBC parameters in vacuum and see if Bilby fits a solution

e In the case of marginal GW detection, can we still put estimates on the
source?
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Examining the Toy Model

Pros
e Simple model which makes testing parameter estimation easier
e GW amplitude is in a realistically detectable scenarios
Cons
e Forming neutron degenerate objects in disks requires fine tuning cooling

e Realistically, a GW signal will not be this clean
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Realistic Model: Cooled Disk Instability

In LIGO’s Sight? Vigorous Coherent Gravitational Waves from Cooled Collapsar Disks

ORE GOTTLIEB,!*2 AMIR LEVINSON,> AND YURI LEVINZ: 1+4

e Supernova, BNS or BHNS — central black hole + accretion disk

e Neutrino cooling in disk increases its density, leading to Rossby wave instability

e Cooled disk characteristic ratio: 0.1 = H/R s 3, but most GW emission occurs in the innermost

region

e Richardson number measures instability, R,:g(l"’“’l’_"“’/’) (,m)'-

' —
dr

~ dr dr

R.Z 0.25 — RWI

e Characteristic strain is independent of BH mass (M, ~ R ),
but depends on M, —disk thickness, circularization radius of
the gas, the envelope mass

he ~ 7 x 10—:3(10MPC Mgu M; 100km

D 10M;0.1M: Ry

Gottlieb et al. 2024
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https://docs.google.com/file/d/1zqACSIXjTMUGnnxQ_i1HfzPL27yEh4ym/preview

Cooled

Setup

BNS merger

Collapsar

Collapsar
Collapsar
Collapsar

Disk Waveforms
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Cooled Disk Waveforms

(a) face-on
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GRB-GW Searches

e On-source window: starts 600 s before the GRB trigger time and ends at 60 s
after trigger time, or T, after if T,) > 60 s

e Jet propagates in stellar envelope before breakout

e Collapsar disk lifetime: ~100 s

e GW could arrive several minutes before LGRB

e Collapsar rates:

e With SNR 20: “LVK O4 holds the potential to detect GWs emanating from
accretion disks up to distances of a few dozen Mpc”

e [LVK event rate;

Gottlieb et al. 2024
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X-Pipeline Injections

e X (edge-on): ~82 kpc

e [/ (face-on): ~30 kpc

Injected Waveform : gottlieb-x from injection file: ../input/injection_gottlieb-x.txt

We use random number generator rand with seed = 166858100 to choose injections for veto tuning and upper limit calculation
(] For tuning we use 600 injections:
[J For UL calculation we use 600 injections:

detection efficiency onsource offsource

fraction above loudest ever
o o o o
o N » & @ &
circnullinc
=
S

1022
hrss amplitude Hz Y2 circenergy circnullenergy circenergy

[J Histograms of trigger properties

Injected Waveform : gottlieb-z from injection file: ../input/injection_gottlieb-z.txt

We use random number generator rand with seed = 166858100 to choose injections for veto tuning and upper limit calculation
[J For tuning we use 600 injections:
[J For UL calculation we use 600 injections:

detection efficiency onsource onsource offsource

fraction above loudest ever
circnullinc

hrss amplitude Hz' Y2 circenergy circnullenergy circenergy

[J Histograms of trigger properties

circnullinc

circnullinc

100

offsource

10°
circnullenergy

offsource

10°
circnullenergy

Waveform name |central hrss_50% hrss_90% injection scale | injection scale | % of NaNs amplitude | amplitude | total (root sum square)
and parameters |frequency (Hz) (Hz"{ 1/2}) (Hz"{ 1/2}) | 50% UL 90% UL during tuning |SNR in H1 |SNR in L1 |amplitude SNR

149 778 Hz 7.92642e-23 |1.13075e-22 | 0.0846069 0 120697

16 7292 16.4276 23.4464

gottlleb X 86 3741 Hz 5.68247e-22 |2.84665e-21 | 0.641022 3 21122 80 4376 81.2966 114.365

gottlieb-z 77.8068 Hz 4.73806e-22 |5.97847e-22 |0.537334 0.678007 64.8375 65.2383 91.9779
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Next Steps

e Injections at other Mpc (anybody speak Matlab?)
e Investigating how characteristic strain changes with M_, R, etc, more injections
e Deriving a model for Bilby

e Asking Ore Gottlieb for more simulated waveforms
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Future Work: ZTF Triggers (Sam Callos)

e Zwicky Transient Facility (ZTF) catalogues supernovae (SNe)
e GWs possible from accretion disks associated with type Ib/c SNe
o GRBs are highly beamed and don’t always hit us, so can use SNe
observations to look for more GWs
e Searching for triggers within 200 Mpc
o Many within this range
o 30+ within 100 Mpc
o Closest trigger at 11.5 Mpc
e Next: Use X-Pipeline to search for GWs
o Check if supernova events are within LIGO observing time
o Narrowing down accretion disk lifetime makes detection difficult

19



Ben may graduate some day. Postdocs?

Work in my PhD included:

e Detector characterization, Physical
Environment Monitoring

e ~6 months as an LHO Fellow

e Software Development/Maintenance
(Ligocam)

e Targeted Gravitational \WWave Searches in
Multimessenger Transients

searching for jobs in the current
state of the country
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Questions?

Benjamin Mannix: bmannix@uoregon.edu
Genevieve Connolly: gconnoll@uoregon.edu
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X-ray flares

® Some x-ray curves showing
flaring with large x-ray peaks
throughout the decay. Possible
explanation: accretion disk
fragmentation
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GRB 140206A
Redshift: 2.73
Eis0:3.58E53 erg

- Peak Time: 62.11s
Swift-BAT (15-150 keV)
Swift-XRT (0.3-10 keV)

102 103
Time (s)

[Ruffini, R. et al. ApJ 852, 53. (2018)]
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