Searching for Gravitational Waves from Long Gamma-Ray Bursts

Benjamin Mannix, Genevieve Connolly

GWANW 2025

Gamma-Ray Bursts (GRB)

- Detect about 1/day
- Some of the most energetic events in the universe
- Two populations in T₉₀ and spectral hardness
 - Suggests two types of sources
- Used as triggers for targeted gravitational wave searches

Binary Neutron Star Merger

Collapsar

200 z_{100} Component $log_{10}(HR_{32})$ 200 $\log_{10}(T_{90})$

[Salmon, L. et al. Galaxies 10. issn: 2075-4434 (2022)]

Collapsars

- Believed to be massive, rapidly rotating stars
- When star's life ends, likely supernova and emits gamma ray burst along rotational axis while core collapses to compact object (neutron star or black hole)
- Jet powered by mass accreting on to central engine and being launched

[NASA/Goddard Space Flight Center/ICRAR]

Gravitational Waves From Collapsars

- Gravitational instabilities and cooling create over densities or clumps in accretion disks
- Under the right conditions, compact objects may form in collapsar disks

X-Pipeline: Targeted GW Burst Search

- Uses sky position GRB to do coherent gravitational wave search
- Searches for loudest 1% of pixels in coherent spectrogram. Calculates probability each pixel cluster is astrophysical
- Because X-pipeline is an unmodeled search, it doesn't tell us much about the source of the gravitational waves

Black hole-neutron star signal injected and recovered using X-pipeline

P. Sutton et al 2010 New J. Phys. 12 053034

In the event of a gravitational wave detection coincident with a collapsar, what can we say about the source?

Toy Model: Sub-Solar Mass Neutron Stars in Disk

THE ASTROPHYSICAL JOURNAL, 658:1173 – 1176, 2007 April 1

© 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.

FRAGMENTATION OF COLLAPSAR DISKS AND THE PRODUCTION OF GRAVITATIONAL WAVES

ANTHONY L. PIRO AND ERIC PFAHL

Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106; piro@kitp.ucsb.edu, pfahl@kitp.ucsb.edu Received 2006 October 23; accepted 2006 December 7

- Photodisintegration of helium can be a dominant cooling mechanism of the disk at around ~50 R_{Schwarzschild}
- This could potentially give rise to an overdensity collapsing into a sub-solar mass neutron star

Toy Model: Sub-Solar Mass Neutron Stars in Disk

Fragment migration:

$$\frac{dr}{dt} = -r\left(\frac{1}{t_{GW}} + \frac{1}{t_{\nu}}\right)$$

Accretion disk timescale:

GW timescale:

$$t_{GW} = \frac{5}{64\Omega} \left(\frac{GM_{chirp}\Omega}{c^3}\right)^{-5/3} \qquad t_{\nu} \approx \frac{1}{\alpha\eta^2\Omega}$$

 Ω - angular frequency

 M_{chirp} - chirp mass $(m_1 m_2)^{3/5}/(m_1 + m_2)^{1/5}$

 α - viscosity parameter

 η = H / r or thickness of torus accretion disk

Example Waveform

- 10 M_{\odot} black hole, 0.5 M_{\odot} fragment, 20 kpc away, η = 0.6
- Start fragment at 50 R_{Schwarzschild}
- Track evolution until it reaches
 Roche lobe radius (fragment is
 tidally disrupted)
- Calculate gravitational wave emission

 $M_{\rm BH} = 5$ M_{\odot}

 $M_{\rm BH} = 20$ M_{\odot}

Next Steps

- Inject example waveforms into X-pipeline to measure sensitivity
- Feed the model into parameter estimation tool (Bilby)
- Assume normal CBC parameters in vacuum and see if Bilby fits a solution
- In the case of marginal GW detection, can we still put estimates on the source?

Examining the Toy Model

Pros

- Simple model which makes testing parameter estimation easier
- GW amplitude is in a realistically detectable scenarios

Cons

- Forming neutron degenerate objects in disks requires fine tuning cooling
- Realistically, a GW signal will not be this clean

Realistic Model: Cooled Disk Instability

In LIGO's Sight? Vigorous Coherent Gravitational Waves from Cooled Collapsar Disks

ORE GOTTLIEB, 1, 2 AMIR LEVINSON, 3 AND YURI LEVIN^{2, 1, 4}

- Supernova, BNS or BHNS → central black hole + accretion disk
- Neutrino cooling in disk increases its density, leading to Rossby wave instability

• Cooled disk characteristic ratio: 0.1 ≈ H/R ≈ 3, but most GW emission occurs in the innermost

region

• Richardson number measures instability, $R_i = g \left(\frac{1}{\gamma} \frac{d \ln p}{dr} - \frac{d \ln \rho}{dr} \right) \left(r \frac{d\Omega}{dr} \right)^{-2}$ $R_i \approx 0.25 \rightarrow \text{RWI}$

• Characteristic strain is independent of BH mass $(M_{BH} \sim R_d)$, but depends on $M_d \rightarrow$ disk thickness, circularization radius of the gas, the envelope mass

$$h_c \approx 7 \times 10^{-23} \epsilon \frac{10 \,\text{Mpc}}{D} \frac{M_{\text{BH}}}{10 \,M_{\odot}} \frac{M_d}{0.1 \,M_{\odot}} \frac{100 \,\text{km}}{R_d}$$

Cooled Disk Waveforms

Model	Setup	H/R	β_p	$\max(\sigma_0)$	$a_{\rm BH}$	$M_{ m BH} [M_{\odot}]$	$T_{s}[s]$	$R_{\max}[r_g]$	E _{GW} [erg]	ρ (LVK)	<i>ο</i> (CE)	LVK rate [yr ⁻¹]	$f_{\mathrm{GW}}\left[\mathrm{Hz}\right]$
В	BNS merger	0.1	10^{4}	-	0.68	2.67	0.3	10^{3}	2×10^{46}	0.1; 0.2	0.4; 1.4	0	500-2000
C	Collapsar	0.1	-	10^{-3}	0.8	10	24	10 ⁵	7×10^{50}	25; 46	390; 750	≲ 1	30-300
Ca	Collapsar	0.1	-	10^{-3}	0.1	10	6.2	10^{5}	1.5×10^{49}	16; 33	180; 360	$\lesssim 1$	200-300
Cb	Collapsar	0.1	-	10^{-4}	0.8	10	7.4	10^{5}	8×10^{49}	27; 54	350; 690	$\lesssim 1$	100-200
Cc	Collapsar	0.3	-	0	0.8	10	5.4	10 ⁵	1.5×10^{49}	5; 9	74; 130	$\lesssim 10^{-2}$	100-200

Gottlieb et al. 2024

Cooled Disk Waveforms

GRB-GW Searches

- On-source window: starts 600 s before the GRB trigger time and ends at 60 s after trigger time, or T₉₀ after if T₉₀ > 60 s
- Jet propagates in stellar envelope before breakout
- Collapsar disk lifetime: ~100 s
- GW could arrive several minutes before LGRB
- Collapsar rates: $\mathcal{R}_{IGRB} \sim 1 \, \mathrm{Gpc^{-3} \ yr^{-1}}$ $\mathcal{R}_{Collapsar} \approx 100 \, \mathrm{Gpc^{-3} \ yr^{-1}}$
- With SNR 20: "LVK O4 holds the potential to detect GWs emanating from accretion disks up to distances of a few dozen Mpc"
- LVK event rate: $\sim 10^{-2} \, \varrho_{20}^{-3} \, \text{yr}^{-1}$

X-Pipeline Injections

- X (edge-on): ~82 kpc
- Z (face-on): ~30 kpc

Waveform name and parameters	CONTRACTOR OF THE PARTY OF THE			The state of the s	injection scale 90% UL	CALLED AND CONTRACTOR			total (root sum square) amplitude SNR
adi-a	149.778 Hz	7.92642e-23	1.13075e-22	0.0846069	0.120697	0	16.7292	16.4276	23.4464
gottlieb-x	86.3741 Hz	5.68247e-22	2.84665e-21	0.641022	3.21122	0	80.4376	81.2966	114.365
gottlieb-z	77.8068 Hz	4.73806e-22	5.97847e-22	0.537334	0.678007	0	64.8375	65.2383	91.9779

Next Steps

- Injections at other Mpc (anybody speak Matlab?)
- Investigating how characteristic strain changes with M_d, R_d, etc, more injections
- Deriving a model for Bilby
- Asking Ore Gottlieb for more simulated waveforms

Future Work: ZTF Triggers (Sam Callos)

- Zwicky Transient Facility (ZTF) catalogues supernovae (SNe)
- GWs possible from accretion disks associated with type lb/c SNe
 - GRBs are highly beamed and don't always hit us, so can use SNe observations to look for more GWs
- Searching for triggers within 200 Mpc
 - Many within this range
 - 30+ within 100 Mpc
 - Closest trigger at 11.5 Mpc
- Next: Use X-Pipeline to search for GWs
 - Check if supernova events are within LIGO observing time.
 - Narrowing down accretion disk lifetime makes detection difficult

Ben may graduate some day. Postdocs?

Work in my PhD included:

- Detector characterization, Physical Environment Monitoring
- ~6 months as an LHO Fellow
- Software Development/Maintenance (Ligocam)
- Targeted Gravitational Wave Searches in Multimessenger Transients

Thinking about graduation and searching for jobs in the current state of the country

Questions?

Benjamin Mannix: bmannix@uoregon.edu Genevieve Connolly: gconnoll@uoregon.edu

X-ray flares

 Some x-ray curves showing flaring with large x-ray peaks throughout the decay. Possible explanation: accretion disk fragmentation

[Ruffini, R. et al. ApJ 852, 53. (2018)]