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Gamma-Ray Bursts (GRB)

● Detect about 1/day 
● Some of the most energetic events in the universe
● Two populations in T90 and spectral hardness

○ Suggests two types of sources
● Used as triggers for targeted gravitational wave 

searches 

[NASA Goddard/CI Lab]

[Salmon, L. et al. Galaxies 10. issn: 2075-4434 (2022)]
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Binary Neutron Star Merger Collapsar



● Believed to be massive, rapidly 
rotating stars 

● When star’s life ends, likely 
supernova and emits gamma ray 
burst along rotational axis while 
core collapses to compact object 
(neutron star or black hole)

● Jet powered by mass accreting 
on to central engine and being 
launched

[NASA/Goddard Space Flight Center/ICRAR]
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Collapsars



Gravitational Waves
From Collapsars

● Gravitational instabilities 
and cooling create over 
densities or clumps in 
accretion disks

● Under the right 
conditions, compact 
objects may form in 
collapsar disks
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[O. Gottlieb et al 2024 ApJL 972 L4][B. D. Metzger et al 2024 ApJL 971 L34]

https://iopscience.iop.org/article/10.3847/2041-8213/ad697c
https://iopscience.iop.org/article/10.3847/2041-8213/ad6990


● Uses sky position GRB to do coherent 
gravitational wave search 

● Searches for loudest 1% of pixels in 
coherent spectrogram. Calculates 
probability each pixel cluster is 
astrophysical 

● Because X-pipeline is an unmodeled 
search, it doesn’t tell us much about 
the source of the gravitational waves 

5[P. Sutton et al 2010 New J. Phys. 12 053034]

Black hole-neutron star signal injected and 
recovered using X-pipeline

X-Pipeline: Targeted GW Burst Search

https://iopscience.iop.org/article/10.1088/1367-2630/12/5/053034


In the event of a gravitational wave detection coincident 
with a collapsar, what can we say about the source?
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● Photodisintegration of helium can be a dominant cooling mechanism of the 
disk at around ~50 RSchwarzschild 

● This could potentially give rise to an overdensity collapsing into a sub-solar 
mass neutron star
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Toy Model: Sub-Solar Mass Neutron Stars in Disk



8

Fragment migration:
Ω - angular frequency 

Mchirp - chirp mass 

(m1m2)
3/5/(m1+m2)

1/5

𝛼 - viscosity parameter

𝜂 = H / r or thickness of 
torus accretion disk

Toy Model: Sub-Solar Mass Neutron Stars in Disk

GW timescale: Accretion disk timescale:



● 10 M
☉

black hole, 0.5 M
☉ 

fragment, 20 kpc away, η = 0.6

● Start fragment at 50 RSchwarzschild

● Track evolution until it reaches 
Roche lobe radius (fragment is 
tidally disrupted) 

● Calculate gravitational wave 
emission 

9

Example Waveform



10

MBH = 5 
M

☉

MBH = 10 M
☉

MBH = 20 
M

☉

mf = 0.1 M
☉

mf = 0.3 M
☉

mf = 0.5 M
☉



● Inject example waveforms into X-pipeline to measure sensitivity  

● Feed the model into parameter estimation tool (Bilby) 

● Assume normal CBC parameters in vacuum and see if Bilby fits a solution 

● In the case of marginal GW detection, can we still put estimates on the 
source? 
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Next Steps



Pros

● Simple model which makes testing parameter estimation easier 

● GW amplitude is in a realistically detectable scenarios 

Cons

● Forming neutron degenerate objects in disks requires fine tuning cooling 

● Realistically, a GW signal will not be this clean
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Examining the Toy Model



Realistic Model: Cooled Disk Instability

● Supernova, BNS or BHNS → central black hole + accretion disk

● Neutrino cooling in disk increases its density, leading to Rossby wave instability

● Cooled disk characteristic ratio: 0.1 ⪝ H/R ⪞ 3, but most GW emission occurs in the innermost 
region

● Richardson number measures instability,
Ri ⪝ 0.25 → RWI

● Characteristic strain is independent of BH mass (MBH~ Rd),
but depends on Md →disk thickness, circularization radius of
the gas, the envelope mass
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Gottlieb et al. 2024

https://docs.google.com/file/d/1zqACSIXjTMUGnnxQ_i1HfzPL27yEh4ym/preview
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Cooled Disk Waveforms

Gottlieb et al. 2024
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Cooled Disk Waveforms

Gottlieb et al. 2024



● On-source window: starts 600 s before the GRB trigger time and ends at 60 s 
after trigger time, or T90 after if T90 > 60 s

● Jet propagates in stellar envelope before breakout

● Collapsar disk lifetime: ~100 s 

● GW could arrive several minutes before LGRB

● Collapsar rates:

● With SNR 20: “LVK O4 holds the potential to detect GWs emanating from 
accretion disks up to distances of a few dozen Mpc” 

● LVK event rate:
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GRB-GW Searches

Gottlieb et al. 2024
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X-Pipeline Injections

● X (edge-on): ~82 kpc

● Z (face-on): ~30 kpc
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Next Steps

● Injections at other Mpc (anybody speak Matlab?)

● Investigating how characteristic strain changes with Md , Rd , etc, more injections

● Deriving a model for Bilby

● Asking Ore Gottlieb for more simulated waveforms 



● Zwicky Transient Facility (ZTF) catalogues supernovae (SNe)
● GWs possible from accretion disks associated with type Ib/c SNe

○ GRBs are highly beamed and don’t always hit us, so can use SNe 
observations to look for more GWs

● Searching for triggers within 200 Mpc
○ Many within this range
○ 30+ within 100 Mpc
○ Closest trigger at 11.5 Mpc

● Next: Use X-Pipeline to search for GWs
○ Check if supernova events are within LIGO observing time
○ Narrowing down accretion disk lifetime makes detection difficult
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Future Work: ZTF Triggers (Sam Callos)



Work in my PhD included:

● Detector characterization, Physical 
Environment Monitoring

● ~6 months as an LHO Fellow
● Software Development/Maintenance 

(Ligocam)
● Targeted Gravitational Wave Searches in 

Multimessenger Transients
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Ben may graduate some day. Postdocs?

Thinking about graduation and 
searching for jobs in the current 
state of the country 



Questions?
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Benjamin Mannix: bmannix@uoregon.edu
Genevieve Connolly: gconnoll@uoregon.edu



X-ray flares

● Some x-ray curves showing 
flaring with large x-ray peaks 
throughout the decay. Possible 
explanation: accretion disk 
fragmentation

[Ruffini, R. et al. ApJ 852, 53. (2018)]
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