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Ground-based gravitational-wave detectors require calibration to map the measured output of
the interferometer to gravitational-wave strain. This calibration has uncertainties that vary across
the frequency band of the detectors; these uncertainties are included in analyses that infer the
source properties of gravitational-wave signals. During the fourth observing run of the LIGO–Virgo–
KAGRA network, it was discovered that there was an error in how uncertainties for LIGO calibration
were handled in these analysis, with a mismatch between the output of the calibration calculation
and the assumed input for the source-property inference. For data from the first three observing
runs, this should have a small impact on results, as the calibration uncertainties had near-zero means.
We present an efficient method to reweight inference results to correct the calibration uncertainties.
We verify the accuracy of reweighting through comparison with a selected subset of rerun analyses.
Using the reweighting algorithm, we are able to confirm that the error in calibration conventions does
not significantly impact any conclusions of previous analyses, with the most significant difference
being for the inferred right ascension for GW150914.

I. INTRODUCTION

Since the first gravitational-wave (GW) observation in
2015 [1], the LIGO–Virgo—KAGRA (LVK) Collabora-
tion has observed 218 probable compact binary coales-
cence (CBC) candidates as of the fourth Gravitational-
Wave Transient Catalog (GWTC-4) [2–4], with over 200
candidates detected during the ongoing fourth observing
run (O4) [5]. The new information obtained from ana-
lyzing these signals has enabled us to better understand
the astrophysical population of black holes [6], to place
constraints on nuclear equation of state [7], to measure
the expansion of the Universe in a new way [8], and to
test general relativity (GR) [9], among other advances.

The GW data are measured by the two Advanced
LIGO [10] detectors, the Advanced Virgo [11] detector,

or the KAGRA detector [12]. These are Michelson in-
terferometers with Fabry–Pérot resonant cavities. They
measure relative differential arm displacement called the
strain

d(t) =
∆Lx −∆Ly

L
, (1)

where L is the arm length of the interferometer. The re-
sulting discrete time series d(t) is the primary data prod-
uct for all GW analysis.
What the detectors actually record are the laser power

fluctuations at the photodetector. The photodetector
data is transformed to a calibrated strain using the mea-
sured response of the GW detectors [13–16]. This proce-
dure is subject to both statistical and systemic errors. If
we call our frequency domain calibrated data d(f) and
the hypothetical perfectly calibrated data d⋆(f), those
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are related by

d⋆(f) = ηR(f)d(f) , (2)

where ηR(f) is a frequency-dependent calibration correc-
tion factor.1 The calibration methods employed by LVK
produce uncertainties on this factor in the form of a dis-
tribution.

For the parameter-estimation (PE) process, we need

to define the likelihood function L(d|θ⃗) where θ⃗ are the
parameters of our model. From Eq. (2)

d =
1

ηR
(h(θ⃗) + n⋆) =

h(θ⃗)

ηR
+ n , (3)

where h(θ⃗) is the data-analysis template and n = n⋆/ηR
is the measured detector noise. We need to account for
potential miscalibration error by modifying each wave-
form template we calculate during the PE process, even
though the effects of calibration on PE are small [17, 18].

During O4, an issue was discovered in the application
of this recalibration process in all the LVK’s analysis
codes. For the Virgo [19–21] and KAGRA [22] detectors,
the uncertainty is reported for 1/ηR. It was incorrectly
assumed that LIGO followed the same convention and
gave the uncertainty on 1/ηR; however, the uncertainty
was given for ηR. As a result, instead of accounting for
the calibration uncertainty, this introduces an additional
error into the analysis.

In this work, we present a method of correcting for this
calibration-uncertainty error for the previously produced
posteriors from the first three observing runs (O1–O3) by
transforming the posterior samples and then reweighting
them to the correct likelihood. In Sec. II, we describe
different possible approaches to reweighting and argue
which is the best. In Sec. III, we verify that we have
chosen the best reweighting method. By applying it to
GWTC-3 PE results [23] and to the test of modified dis-
persion relation (MDR) [9, 24], we show that the error
leads only to small changes in the posteriors, even when
observations from multiple signals are combined.

II. METHODS

A. Implementation of calibration uncertainty

In LVK GW data analysis, the calibration error is
folded into the analysis by its inverse α = 1/ηR. The
standard likelihood then takes form [1]

lnL = −1

2
⟨n|n⟩+ C = −1

2
⟨d− αh|d− αh⟩+ C , (4)

1 We will drop the explicit frequency dependence and assume that
the data is always in the frequency domain, unless specified oth-
erwise.

following Eq. (3), where ⟨·|·⟩ indicates a noise-weighted
inner product [25, 26]. The calibration factor α is then
split between its magnitude and phase as

α(f) = (1 + δA(f)) eiδψ(f) , (5)

where δA = δψ = 0 corresponds to no calibration cor-
rection (the strain is perfectly calibrated). The O1–O3
PE analyses was performed on the data recalibrated from
the initial calibration model [23, 27], and therefore, cali-
bration uncertainties were small and centered near zero.
In PE analyis the calibration-error factors δA(f) and

δψ(f) are modeled as cubic splines [28],

δA(f) = Spline(f ; δAi) , (6)

δψ(f) = Spline(f ; δψi) , (7)

where δAi, δψi are the values at fixed frequency points—
these are the calibration parameters in the PE analysis.
For each of these parameters, we set up Gaussian priors,

π(δAi) = N (µi, σi) , (8)

π(δψi) = N (µ′
i, σ

′
i) , (9)

chosen to best fit the error estimates on the calibration
correction factor [14–16]. These priors have historically
been assumed to be for α in the PE analysis, but were set
for ηR in LIGO calibration. Confusing the two for small
calibration uncertainties gives the mean of the prior the
wrong sign, and does not affect the width (see Sec. II F).
In general, misspecification of the priors will lead to the
analysis not properly accounting for calibration uncer-
tainty.

B. General description of reweighting

To update results with incorrect calibration priors,
analyses could be rerun with updated conventions. How-
ever, this is computationally expensive. An alternative
is to reweight existing posteriors.
Let us begin by describing the general procedure of

reweighting posteriors. Starting with samples {θ}, drawn
from a posterior p, our aim is to obtain samples, ϑ, drawn
from our target posterior p′:

ϑ ∼ p′(ϑ|d)dϑ (10)

θ ∼ p(θ|d)dθ , (11)

where the posteriors are conditioned on the observed data
d. In principle, the two parameter sets may be drawn
from differing distributions. However, we may create a
map between the samples:

ϑ = ϑ(θ) = F (θ) , (12)

where we require F to be a single-valued function whose
image is the whole domain of p′(ϑ|d).
With this map and the requirement, we do not have

to sample from p′ to obtain ϑ—we may simply take our
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original samples and use the mapping to transform them
and assign each sample a weighting factor:

w(ϑ) =
p′(ϑ|d)dϑ
p(θ|d)dθ . (13)

We can then rejection sample to obtain explicitly samples
drawn from the new posterior, or apply the weighting
when calculating any derived statistical quantities.

Bayes’ Theorem states:

p(θ|d) = L(d|θ)π(θ)
Z , (14)

where L is the likelihood, π is the prior and Z is the
evidence—a normalization factor. Applying this, we may
expand our definition of the weights:

w(ϑ) =
L′(d|ϑ)π′(ϑ)dϑ

L(d|θ)π(θ)dθ , (15)

noting that we have ignored the evidences as these con-
tribute merely a multiplicative factor that does not affect
the weighting process.

This procedure is valid so long as the original posterior
encloses the target posterior and we are not restricted in
our transformation choice between ϑ and θ. In practical
applications, however, there is a finite number of samples
and it is possible for the reweighting procedure to be
sufficiently inefficient as to reject the vast majority of
samples.

In the rest of this section, we examine in detail three
reweighting methods, arranged by complexity and dis-
cuss their applicability to the task of reweighting to ac-
count for the calibration-envelope error.

C. Prior reweighting

The simplest approach to reweighting the posterior is
reweighting the prior—requiring only the analysis sam-
ples and the priors used and avoiding the need of recom-
puting the likelihood as is the case for the more complex
methods.

In this approach, the likelihood is treated as correct—
the calibration envelope should be applied to the tem-
plate and thus the incorrect interpretation has resulted
in incorrect priors. As such, L′ = L, ϑ = F (θ) = θ, and
Eq. (15) simplifies to:

w(θ) =
π′(θ)

π(θ)
. (16)

The form of the calibration correction given in Eq. (5)
shows that the incorrect interpretation was:

1

α(f)
≈ (1− δA(f)) e−iδψ(f), (17)

for small amplitude corrections δAi ≪ 1. The original
priors on the calibration-envelope parameters are given

by Gaussian distributions—see Eq. (8)—and the change
in the prior distribution is a change in the sign of the
mean of the distribution.
The reweighting factor for any single calibration pa-

rameter (single amplitude or phase node), referred here
as x, is then:

w(x) =
N (−µ, σ)
N (µ, σ)

= exp

(
(x+ µ)2

2σ2
− (x− µ)2

2σ2

)
= exp

(
2x2 + 2µx+ µ2 − 2x2 + 2µx− µ2

2σ2

)
= exp

(
2
µx

σ2

)
. (18)

We can quantify the performance of the reweighting
in terms of the effective sample size, which is the effec-
tive number of independent samples after the reweighting
process and is given by:

neff =

(∑N
i=1 wi

)2

∑N
i=1 w

2
i

, (19)

where N is the total number of samples and wi is the
importance weight of the ith sample. From the effective
sample size, we then define

ϵ =
neff
N

=
⟨w⟩2
⟨w2⟩ , (20)

as the reweighting efficiency, where ⟨. . . ⟩ denotes average
over all the samples. This quantity may vary between
0—in which case all samples are lost in the reweighting
process—and 1—all samples are kept.
If we assume that the posteriors of calibration parame-

ters are equal to their Gaussian priors2, then we can cal-
culate the reweighting efficiency exactly. The reweighting
factor for any single calibration parameter x is given by

⟨w⟩ =
∫

dxw(x)N (µ, σ)

=

∫
dx

1√
2πσ

exp

(−(x− µ)2 + 4xµ

2σ2

)
= exp

(
4µ2

σ2

)
(21)

⟨w2⟩ =
∫

dxw(x)2N (µ, σ)

=

∫
dx

1√
2πσ

exp

(−(x− µ)2 + 8xµ

2σ2

)
= exp

(
12µ2

σ2

)
, (22)

2 In GWTC-3 all posteriors of calibration parameters were domi-
nated by the prior [29, 30].



4

and so theefficiency per parameter is

ϵ =
neff
N

=
⟨w⟩2
⟨w2⟩ = exp

(−4µ2

σ2

)
. (23)

For the calibration priors µ ≈ σ/2 on average, and
there are up to 40 independent calibration priors (10 fre-
quency nodes and 2 real values per node per detector that
observes a GW event; Virgo detector does not count as
its calibration priors are symmetric) with similar weights.
This gives a total efficiency ϵ ∼ exp(−40). No samples
survive the reweighting process.

D. Likelihood reweighting

A significant drawback of the prior reweighting ap-
proach is that it is sensitive to the calibration prior even
if the joint posterior of the non-calibration parameters is
not sensitive to the calibration at all. We may mitigate
this problem by interpreting the original prior as correct
and the likelihood as being the source of the calibration
error.

In this approach, the corrected likelihood has the form:

L′(d|ϑ) = L(d|g(ϑ)), (24)

where

g(ϑ) =

{
(1 + ϑ)−1 − 1 ≈ −ϑ , ϑ = δAi ,

−ϑ , ϑ = δψi ,
(25)

follows from the form of the calibration correction
Eq. (5). Similarly to the prior reweighting approach, the
samples remain untransformed, but this time, the priors
remain the same. This simplifies Eq. (15) to

w(θ) =
L(d|g(θ))
L(d|θ) ≈ L(d| − θ)

L(d|θ) . (26)

However, this method is also insufficient to handle the
reweighting. To illustrate this, consider a toy model
where the calibration correction is simply a constant
amplitude correction across all of the frequencies, i.e.,
α(f) = 1+ ϑ = 1+ θ. For small calibrations, the correct
calibration likelihood (4) takes the form:

lnL′ = −1

2
⟨d− (1 + θ)h|d− (1 + θ)h⟩+ C

≈ −1

2
⟨d− h|d− h⟩+ C + ⟨d− h|h⟩ θ , (27)

and the original likelihood takes the form

lnL ≈ −1

2
⟨d− h|d− h⟩+ C − ⟨d− h|h⟩ θ . (28)

The weights in this case may then be expressed as:

lnw(θ) = lnL′ − lnL = 2 ⟨d− h|h⟩ θ, (29)

where θ is the amplitude sample and the other factor
is the product of the waveform template with the resid-
ual. Assuming both factors are independently normally
distributed,

⟨d− h|h⟩ ∼ N (0, ρ) , (30)

θ ∼ N (µ, σ) . (31)

The distribution of their product is given by

lnw ∼ N (0, 2µρ) + p(lnw) , (32)

where

p(lnw) =
K0

(
| lnw|
2σρ

)
2πσρ

, (33)

and

K0(x) =

∫ ∞

0

d t
cos(xt)√
t2 + 1

(34)

is a modified Bessel function of the second kind. The
spread in weights is then given by

∆ lnw(θ) =
√
4µ2ρ2 +Var [p(lnw)] = 2ρ

√
µ2 + σ2

(35)

In an example case of the GW200129 065458, an O3
observation that has relatively high signal-to-noise ra-
tio [23], ρ ≈ 26.7, σ ≈ 0.013 and µ ≈ 0.005 mean-
ing that ∆ lnw(θ) ≈ 0.7 and the resampling efficiency
is ϵ ≈ 10%3. While much more efficient than prior
reweighting, this approach can still reject most of the
posterior samples.

E. Sample transformation and likelihood
reweighting

The failure of the previous method is that when the
calibration posterior differs significantly from the cali-
bration prior—i.e., in the scenario where the calibration
has a measurable effect on the likelihood—the original
calibration samples do not sufficiently cover the correct
region of parameter space, leading to a significant loss of
samples.
In the previous methods, we have left the samples un-

transformed (i.e., θ = ϑ). However, we are permitted to
choose an endomorphic transformation of the calibration
parameters to move the samples from the location of the
original posterior towards the expected location of the
corrected posterior. To choose a suitable such transfor-
mation function F (θ), we force it to follow the symmetry
of the prior

π(ϑ)dϑ = π(θ)dθ. (36)

3 This was computed numerically as the distribution of w is poorly
approximated by log-normal distribution.
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The calibration parameter priors are Gaussian, Eq. (8),
and as such, we may immediately see that the desired
transformation function is a reflection along the mean:

F (θ) = 2µ− θ , (37)

which will yield

π(θ)dθ =
1√
2πσ2

exp

(
− (µ− 2µ+ ϑ)2

2σ2

)
|d(2µ− ϑ)|

=
1√
2πσ2

exp

(
− (µ− ϑ)2

2σ2

)
dϑ

= π(ϑ)dϑ. (38)

Employing this transformation function simplifies
Eq. (15) to:

w(ϑ) =
L′(d|ϑ)
L(d|θ) =

L′(d|F (θ))
L(d|θ)

=
L(d|g(F (θ)))

L(d|θ) ≈ L(d|θ − 2µ)

L(d|θ) , (39)

where g(θ) is the same function as defined in Eq. (25).
To illustrate the improved efficiency of this method, we

adopt the same toy model and follow a similar approach
as the pure likelihood reweighting case above. In this
case, the likelihoods are given by

lnL′ ≈ −1

2
⟨d− h|d− h⟩+ C + ⟨d− h|h⟩ θ (40)

lnL ≈ lnL′ − 2 ⟨d− h|h⟩µ, (41)

the expression for the weights takes form

lnw(θ) = lnL′ − lnL = 2 ⟨d− h|h⟩µ, (42)

and again assuming Gaussian distribution for ⟨d− h|h⟩
from Eq. (30), the distribution of weights is gven by the
log-normal distribution

lnw(θ) ∼ N (0, 2µρ) . (43)

The reweighting efficiency is then

⟨w⟩ = exp
(
2µ2ρ2

)
, (44)

⟨w2⟩ = exp
(
8µ2ρ2

)
, (45)

ϵ =
⟨w⟩2
⟨w2⟩ = exp

(
−4µ2ρ2

)
. (46)

Again, using the case of GW200129 065458 as an exam-
ple, ρ ≈ 26.7, σ ≈ 0.013, and µ ≈ 0.005, so the reweight-
ing efficiency becomes ϵ ≈ 90%, which is high enough to
retain most samples.

Having selected this approach, we may now summarise
the entire reweighting process that may be applied to
correct GW analyses for the calibration error. The pro-
cedure is as follows for Bilby [31, 32] PE results:

1. Retrieve the original posterior from the Result ob-
ject.

2. Retrieve the original likelihood. If the run was per-
formed with marginalisation of any of the parame-
ters, then this must be recomputed, as by default
Bilby Result objects store only the marginalised
likelihoods and not the true likelihoods.

3. Perform transformations of samples:

(a) Transform each calibration sample, θ, using
Eq. (37).

(b) For each sample of the calibration amplitude,
θ, replace it with (1 + θ)−1 − 1.

(c) For each sample of the calibration phase, θ,
replace it with −θ.

4. Compute the likelihood for each sample point.

5. Perform steps 3(b) and 3(c) again to undo them.

6. Using the recomputed old likelihood L and newly
computed likelihood L′, assign the weights w =
exp(lnL′ − lnL).

7. These weighted samples now describe the posterior
under the correct calibration model.

8. Adjust the evidence to account for the reweighting

lnZ ′ = lnZ + ln
∑N
i wi − lnN

F. Expected impact on calibration parameter
posteriors

Having demonstrated the efficiency of the sample
transformation method, we now demonstrate that the
method transforms the calibration parameter posteriors
closer to the correct posteriors, in the case of small cali-
bration corrections.
Let π(θ) = N (µ, σ2) be the prior on a calibration pa-

rameter, and let L1(d|θ) and L2(d|θ) be the likelihoods
for the original and the correct calibration models respec-
tively. For small calibrations, L2(d|θ) = L1(d| − θ). The
respective posteriors are thus given by:

p1(θ) = L1(d|θ)π(θ),
p2(θ) = L2(d|θ)π(θ). (47)

For simplicity during this demonstration, we assume
that the marginalised calibration likelihoods are also nor-
mally distributed similarly to the prior:

L1(d|θ) = N (µ′, σ′2)

L2(d|θ) = L1(d| − θ) = N (−µ′, σ′2) , (48)

but with standard deviations much wider than those
of the priors (σ′ ≫ σ). This latter statement derives
from previous analyses demonstrating that the calibra-
tion posteriors are dominated by information from the
prior [29, 30].
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The product of two normal distributions is another
normal distribution:

N (µA, σ
2
A)×N (µB , σ

2
B)

∝ N
(
µAσ

2
B + µBσ

2
A

σ2
A + σ2

B

, (σ−2
A + σ−2

B )−1

)
(49)

The means (µ1, µ2) and standard deviations (σ1, σ2) of
the posteriors are therefore

µ1 =
µσ′2 + µ′σ2

σ2 + σ′2 ≈ µ+ (µ′ − µ)
σ2

σ′2

σ2
1 = (σ−2 + σ′−2)−1 ≈ σ2

(
1− σ2

σ′2

)
, (50)

for the original posterior and

µ2 ≈ µ+ (−µ′ − µ)
σ2

σ′2 = 2µ− µ1 − 2µ
σ2

σ′2

≈ 2µ− µ1

σ2
2 ≈ σ2

(
1− σ2

σ′2

)
= σ2

1 , (51)

for the corrected posterior. From this expression, we see
the expectation that the corrected calibration posteriors
will be mirrored around the mean of the prior compared
with the original posteriors, justifying our choice of trans-
formation.

III. RESULTS

To ascertain how much PE results are affected by
the calibration issue, we investigate the effects on two
datasets: parameter estimation results from GWTC-
3 [23] and the test for a MDR in GWTC-3 [9].

GWTC-3 consists of 90 CBC signals with a prob-
ability of astrophysical origin greater than 0.5 [23].
In this catalog, a number of PE analyses were em-
ployed. These analyses were performed using a va-
riety of waveform models, predominantly: IMRPhe-
nomXPHM [33], IMRPhenomNSBH [34], SEOB-
NRv4 ROM NRTidalv2 NSBH [35], and IMRPhe-
nomP NRTidal [36, 37] and were performed either with
the Bilby [31, 32, 38] Bayesian inference package us-
ing the dynesty nested sampler [39], or the LALIn-
ference package using its in-built Markov-chain Monte
Carlo sampler [40–43]. Additionally, analyses using the
more computationally expensive SEOBNRv4PHM [44]
analyses were performed with the RIFT inference soft-
ware [45–47].

RIFT analyses do not model the calibration uncer-
tainty during the sampling process. Instead, RIFT
introduces it in a post-processing step by reweighting
the likelihood [17, 27]. As such, the error may be
accounted for by rerunning the post-processing step
with corrected calibration envelopes. Both Bilby
and LALInference, however, model the calibration

uncertainty by sampling over draws from the prior,
and thus require one of the methods outlined in Sec. II
to correct the results. Whilst this process could in
principle be done for both pipelines, in the case of
LALInference the saved results and metadata proved
insufficient to accurately reconstruct the likelihood. As
such, this work will focus only on reweighting Bilby
results in which the likelihood object is directly saved
and may thus be easily and accurately reconstructed. Of
the GWTC-3 signals, only 9 were analysed with LAL-
Inference instead of Bilby—those being GW170608,
GW170187, GW190707 093326, GW190720 000836,
GW190725 174728, GW190728 064510, GW190814,
GW190924 021846 and GW190917 114630 [27, 48].
The second dataset used to measure the impact of the

calibration-envelope error are the subset of 43 events se-
lected to use for investigation of potential signatures of
MDR based on GWTC-3 data performed in Baka et al.
[49]. This analysis was performed using the Bilby infer-
ence framework, the dynesty nested sampler, and the
IMRPhenomXPHM waveform model. Each event was
analysed for 10 values of the α parameter defined below
yielding a total of 430 PE posteriors for investigation.
To briefly summarise the MDR investigation, the dis-

persion relation is modified to [50, 51]:

E2 = (pc)2 +Aα(pc)
α , (52)

and we estimate the posterior of the amplitude parame-
ter Aα. As this amplitude is a property of space-time and
therefore common between all the signals, the investiga-
tion creates a combined posterior from the multiplication
of individual event posteriors on the amplitude. As such,
the MDR dataset provides a significant test of the impact
of the calibration-envelope error by allowing us to probe
even smaller systematic biases of the posterior that may
not be indicated from examination of individual event
posteriors.

A. Comparison of reweighting methodologies

We first demonstrate the performance of each of the
reweighting methods outlined in Sec. II. From our the-
oretical discussion in that section, we would expect the
performance of each method to improve in the order that
they were discussed.
We quantify the performance of the method in terms

of the reweighting efficiency defined in Eq. (20).Our aim
is to select the methodology that maximises the value of
ϵ.
In Fig. 1, we show the reweighting efficiency for each

of the three methods on the 430 posteriors in the MDR
dataset. We can see that the reweighting efficiency is
following the theoretical predictions outlined in our pre-
vious discussion. For the prior reweighting approach,
ϵ ∈ [4× 10−5; 6× 10−3] which, given the number of sam-
ples is of order 103–104, means that the resulting pos-
terior consists of only a handful of samples. As such,
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FIG. 1. Performance of different reweighting approaches
quantified by their reweighting efficiency ϵ. Middle: All the
methods plotted together. Top: Close-up of the low-efficiency
region. Bottom: Close-up of the high-efficiency region.

this method fails completely. In the likelihood reweight-
ing approach, the maximal efficiency is 0.897 with 90%
of values above 0.123—below this value posteriors begin
to suffer from low resolution. Of the 10% of cases below
this value, a number do fail entirely with the worst-case
scenario efficiency being 5 × 10−4. Turning to the sam-
ple transformation and likelihood reweighting scenario,
the situation markedly improves with the efficiency now
ranging between 0.903 and 0.997, i.e., significant numbers
of samples are retained which allows accurate represen-
tation of the new posterior.

This allows us to draw the conclusion that of the three
techniques, only the sample transformation and likeli-
hood reweighting approach is suitable and we may dis-
card the other two. As such, in the following sections any
reference to reweighted samples, posteriors, etc., refers
specifically to reweighting done using this approach.

B. Effect on GWTC-3 PE posteriors

With our reweighting technique decided, we turn now
to assess the impact of the calibration envelope error on
the posteriors by quantification of the change in poste-
riors after the reweighting of the GWTC-3 PE dataset.
This quantification is done via the Jesnsen–Shannon di-
vergence (JSD) [52] between the two distributions. The
JSD is defined between distributions p and q as:

JSD(p, q) =
1

2
D(p||m) +

1

2
D(q||m) , (53)

10−4 10−3

JSDmax

0

2

4

6

8

10

12

N
ev

en
ts

FIG. 2. Histogram of the maximum JSD among the one-
dimensional posteriors for GWTC-3 candidates [23, 27]. Only
6 analyses have JSD above 0.0015 nat, denoted by the vertical
line.

where m = (p+ q)/2 is the mixture distribution and

D(p||q) =
∫

dx p(x) ln

(
p(x)

q(x)

)
(54)

is the relative entropy [53]. For sampling performed
with Bilby using the dynesty nested sampler, the JSD
between one-dimensional marginalised posteriors is ex-
pected to be up to 0.0015 nat due to statistical fluctua-
tions of the sampler [32]. As such, this is the criterion we
adopt to determine how often the calibration envelope
error leads to statistically distinct posteriors. For each
of the events, we compute for all of the standard CBC
parameters—masses, spins, distances, etc—the JSDs be-
tween the reweighted and original posteriors. The maxi-
mum of these is then compared with the criterion thresh-
old value and if it is in excess of it, the posteriors are
determined to be significantly different.

The results of this process are shown Fig. 2, in which
the threshold value is noted as a vertical line. The vast
majority of results are below the threshold value indi-
cating that their posteriors are unaffected by the cali-
bration envelope error. There are 6 analyses, however,
which do show significant differences in their posteriors:
GW150914, GW191216 213338, GW191219 163120 (this
is the case for both the low and high spin prior analyses—
high and low spin prior analyses are carried out for events
that may contain neutron stars), GW191109 010717,
and GW200306 093714. For these, we show the one-
dimensional posteriors that have significant differences
in Fig. 3. The differences are relatively minor—with the
exception of the right-ascension posterior for GW150914,
in which the dominant peak of the bimodal posterior dis-
tribution is reversed. Sky localization is particularly im-
pacted by calibration uncertainty [17, 54], and the lo-
calization for GW150914 is understood to vary with the
adopted calibration uncertainty [1, 55], so this is unsur-
prising.
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FIG. 3. Comparison of all the incorrect and the reweighted posteriors of GWTC-3 signals with JSD > 0.0015 nat between the
posteriors. For GW191219 163120, both the analysis with low- (−) and high-spin (+) priors were affected by the calibration
issue. The parameters shown are luminosity distance (DL), right ascension (RA), mass ratio (q), chirp mass (M), tilt angle
of the primary spin (θ1), angle between the line-of-sight and the total angular momentum (θJN) and time of coalescence (tc)
relative to its mean.

1. GW150914

As GW159014 is the signal with the most noticeable
difference between the original and reweighted posteriors,
we select it to test the validity of the reweighting method.
This is done by performing two PE investigations on the
strain data: one with the original incorrect treatment
of the calibration uncertainty and one with the correct
treatment. We otherwise retain all configuration settings
between the two runs. We then apply the reweighting
algorithm to the former run to verify that the posteriors

match the latter run.

Fig 4 shows the comparison between the original and
rewighted posteriors from the run with incorrect treat-
ment of the calibration uncertainty and the posterior
from the run with the correct treatment for specifically
the fractional calibration amplitude δA of the LIGO Han-
ford detector at the spline node located at 385Hz. Ex-
amining the two directly sampled posteriors, we see that
they have peaks away from δA = 0 with opposite sign.
This neatly illustrates why the two other reweighting
methods demonstrate such poor efficiency in this case—
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FIG. 4. Fractional calibration amplitude (δAH1) posterior
for the LIGO Hanford detector at the spline node at 385Hz.
The reweighting procedure transforms the original posterior
to closely match the posterior obtained with the correct cali-
bration model.

the two posteriors do not overlap, so simple reweighting
would not be able to transform one into the other. By
transforming the samples first, we have moved them to
approximately the correct position which can then be
more effectively reweighted. Indeed, we see that the
reweighted posterior appropriately matches with the pos-
terior obtained from the analysis with correct calibration-
uncertainty treatment.

Fig 5 shows similar posterior comparisons for the two
non-calibration parameters: the luminosity distance DL

and the right ascension RA. We confirm the validity
of our reweighting method here as the reweighted pos-
terior is an accurate reflection of the posterior obtained
when the correct calibration uncertainty treatment is ap-
plied. Whilst a similar pattern would hold for the other
parameters, these are not shown as the differences be-
tween the parameters is insufficient to be visually no-
ticeable. Similar investigations of few other events yield
similar results—the reweighting process yields posteriors
that match the corrected results.

Even though the posteriors are affected by the calibra-
tion error, the calibration envelopes of GW150914 are
not significantly antisymmetric, as can be seen in Fig. 6.
The envelopes become more antisymmetric at higher fre-
quencies, but their means are always within one standard
deviation of 0.

C. Effect on GWTC-3 MDR posteriors

Turning to the MDR analyses, as noted in this investi-
gation the independent observations of Aα for each event
are combined together to yield the final posterior. This
can be written as:

p(Aα|d) ∝ π(Aα)
1−N

N∏
i=1

p(Aα|di) , (55)
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F
FIG. 5. Comparison of GW1509154 posteriors between an
incorrect run, reweighted posteriors and the rerun with the
correct calibration model. The reweighting procedure accu-
rately transforms the shape of the posterior.
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FIG. 6. Comparison of GW1509154 calibration uncertainty
envelope on α = 1/ηR used to construct the priors (shaded
region) with the recovery of the recalibration factor after PE.
Both areas are regions within one standard deviation of the
mean. The calibration factor is split between the fractional
amplitude deviation δA and the phase deviation δψ.

where d is the combined data from each of the N indi-
vidual observations, di, and π(Aα) is the prior. As multi-
ple posteriors are combined together, the error from the
incorrect calibration uncertainty may compound, which
could show differences in such a combined posterior even
if they were not apparent in individual event posteriors.

Having verified in the previous subsection that the
reweighting process produces posteriors representative of
those from analyses with the correct calibration treat-
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FIG. 7. Combined posteriors on the dispersion amplitude Aα for 43 signals used in MDR test in GWTC-3. The calibration
issue causes only a negligible difference between the original and the reweighted posteriors.

ment, Fig. 7 shows the original and reweighted combined
Aα posteriors. The JSD between the two posteriors for
each Aα exceeds the 0.0015 nat threshold for individual
posteriors, with the largest distance being 0.023 nat for
the α = 0 distribution. We also see a corresponding shift
in the quantiles at which GR (Aα = 0) is recovered—with
a maximal shift of 1.8% for the α = −1 case.
However, the calibration uncertainty error is not the

only uncertainty that accumulates when combining indi-
vidual posteriors together. Errors in kernel density es-
timation (KDE) will also accumulate in the combined
posterior. Notably, the decreases in effective sample size
affects the bandwidth used for KDE according to Scott’s
rule:

b = σn
−1/5
eff , (56)

where b is the bandwidth and σ is the standard devia-
tion of the samples. The bandwidth strongly affects the
estimates obtained from the KDE and its effect on the
combined MDR posteriors was remarked on in Baka et al.
[49]. Considering this, we may conclude that the results
from both the original and reweighted combination are,
overall, consistent despite the increase in JSD.
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