

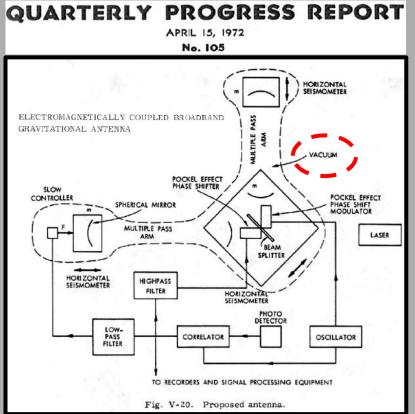
Beamtube Design, Fabrication, Assembly and Commissioning Tradeoffs

Mike Zucker, Caltech & MIT

LIGO Laboratory and Cosmic Explorer Consortium

CE - ET Beamtube Workshop III (BTW3)
LIGO Hanford
30 September, 2025

LIGO-G2502104



How This All Started

Rai Weiss, MIT

Review: ET and CE Vacuum Drivers

Brownian recoil of mirrors due to gas molecule impact

$$P(H_2) < 10^{-8} \text{ Torr}$$

Contamination of optics leading to scattering, heating or damage

Mirror absorption: < 0.1 ppm change over operating life

Hydrocarbons: < 1 monolayer/10 years

Particles: < one 10 µm particle on any mirror

mainly applies to *chambers*

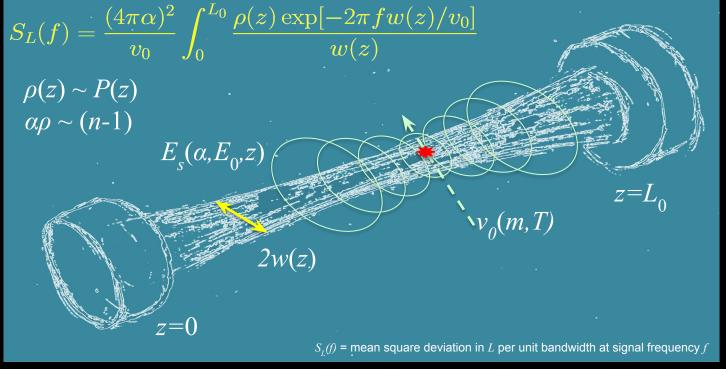
Light scattering from residual gas

A function of molecular polarizability and thermal speed

 $P(H_2) < 10^{-9} \text{ Torr}$

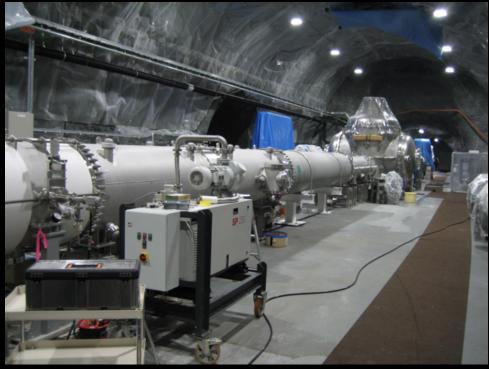
 $P(H_2O) < 10^{-10} \, Torr$

Light scattering from tube walls & internal baffles


A function of everything in the world you could possibly imagine

mainly applies to beamtubes

Light Scattering from Residual Gas



GEO600, KAGRA

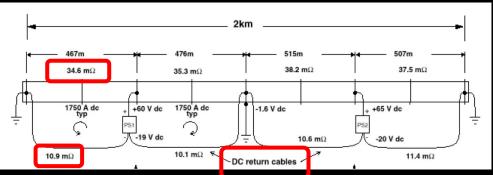
Virgo, LIGO

Example (Starting Point?): How LIGO Did It

- 9,000 m³ / site (x2)
- 30,000 m² / site (x2)
- 304L austenitic SS
 - Air fired at 450°C to deplete H
 - o 3.2 mm thick
 - o 1.245 m OD
 - Spiral welded cylinder
 - Discrete bellows every 40m
 - External stiffeners every 78 cm
 - Internal oxidized SS baffles
 - 20 m unit span/support interval
 - Butt-welded, 2 days/field joint
 - 100% He MSLD tested
 - 2 km sectors (gate valve pitch)
 - I²R bake@160C, 3 weeks/sector
- 1997\$ 47M / 16 km
 - o 1997\$ 3k/m
 - o 1997\$ 60/lb
- About 4.5 years/16km
 - Not including design/development
 - Sequential, by 2km sector

LIGO beamtube fab & field assembly

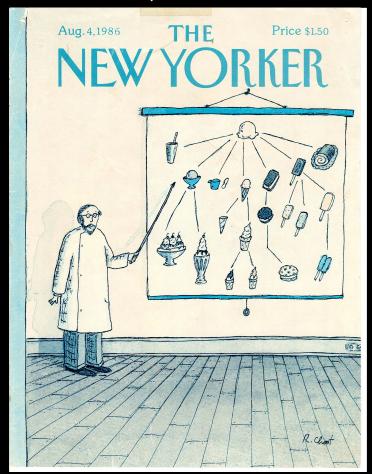
(by Chicago Bridge and Iron)


LIGO beamtube bakeout

2 layers fiberglass applied by hand ~2,000A DC 160°C for 3 weeks

Why not just a bigger LIGO/Virgo/Kagra/GEO?

\$ COST & SCHEDULE


Scaling up existing design 10x could meet technical requirements
...but only if you also scale cost & construction duration

We seek LIGO-like UHV performance

- at <1/2 the cost per unit length
- with total construction duration < 5 years

Choices, choices...

I. CE/ET BEAMTUBE MATERIAL OPTIONS

(See Carlo's talk earlier in this session)

- Air-fired austenitic stainless (e.g., 304L or 316L) no longer the sole option
 - Since 2019, joint CE/ET vacuum study group has vetted mild steel as a UHV material
 - + 5x cheaper than 304 by weight (raw material only)
 - + Intrinsically hydrogen-free (!)
 - + Thin walled (< 5 mm) sections should form & weld similar to austenitic SS
 - High risk/complexity, extra process steps, maintenance burdens due to corrosion susceptibility
 - CERN has also now established ferritic stainless (low-nickel, e.g., 441) as a favorable option
 - + 2x cheaper than 304 by weight; in wide commercial use (e.g., car exhausts)
 - + Also hydrogen-free (!)
 - Lower corrosion resistance than austenitic grades
 - Extra precautions for welding & forming; potential risk of embrittlement
 - Thickwall mild steel (petroleum pipeline) ~ 10mm thick
 - + Super cheap, huge supply; CE or ET would be a small order
 - + No radial stiffeners needed (but expansion joints are essential)
 - Corrosion protection?
 - Leaktest through protective coatings?
 - Weight (support cost)? Transport? Field welding?
 - R/L incompatible with I^2R bake \rightarrow alternate degassing method required
- NOTE: raw material will likely comprise < 15% of total cost
 - "Free" material can cost more, if it takes extra work or adds risk!
 - o Traditional 304 SS is by no means ruled out
 - 450C air-firing to remove dissolved H is an extra step, but well proven by LIGO and Virgo (and comparatively inexpensive)

II. TUBE CONSTRUCTION METHODS

- Straight tubes: Spiral Welding (LIGO)
 - + Arbitrary unit length, long self-supporting span (20m +)
 - + Fast production
 - + Accepts wide variety of material skelp widths
 - Greater total length of welds
 - Specialized production machinery
- Straight tubes: Rolled longitudinal seam (Virgo)
 - + Simpler production tooling
 - Unit length limited by roller tooling and/or skelp width
- Both: Discrete stiffeners and expansion joints straightforward, but labor-intensive & costly
- RAL introduced formed convolutions in the 1990's (effectively all-bellows); used in GEO600
 - + Can use thinner material (as low as 0.9 mm)
 - + Obviates both radial stiffeners and expansion joints (but shorter component units)
 - o Elevates outgassing area, degrades conductance
 - Complicates cleaning/drying
 - Frequent supports or added "spine" required due to sag
- In 2022 CERN demonstrated intermittent formed convolutions as an alternative
 - + Same advantages but reduced area & conductance penalties
 - Fabrication may limit unit length (roll- or hydro-forming)
 - \circ Self-supporting span still limited to ~ 10m (numerous supports or "spine" req'd)
- → Combine roll-forming convolutions with LIGO-like spiral weld?
 - Torsion of helical convolutions with expansion makes this impractical

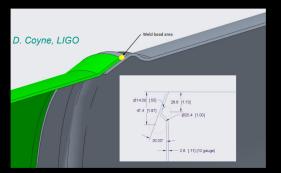
III. Field Joint Options

- Velded joints

 C. Garion, CERN

 additional welded interface

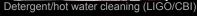
 Vacuum chamber wall


 External welded sleeve

 Fillet weld

 Vacuum chamber wall

 Vacuum chamber wall
- NSE


- Butt welds are not easy or fast
 - LIGO fitup/weld/test took 2 days/joint
 - Relied on extreme skill, intense QA, long learning curve
- Joint alternatives: Flange, Sleeve, Socket?
 - Reduce joint prep time
 - Improve weld reliability
 - Improve repairability
 - Decrease alignment & fitup time
 - Reduce reliance on extreme skill pool
 - Allow multiple assembly fronts w/out compromising quality
- Extreme automation?
 - o Robotic alignment, weld, leaktest?
 - Tooling investment may be reasonable at 80+ km

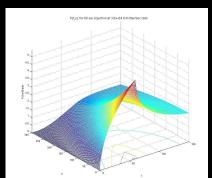
Traveling assembly cleanrooms (LIGO/CBI)

IV. Contamination

- Free iron, salts and chlorides
 - Seed corrosion in SS (intrinsic in mild steel...)
 - Constraint on supply chain, manufacturing, transport, tooling, installation
- Hydrocarbons
 - Phase noise requires $P(HC) < 3 \times 10^{-13} \text{ Torr } (\sim 300 \text{ AMU})$
 - Detergent cleaning removes residues; FTIR sampling to confirm
 - Atmospheric re-exposure restores some HC's
 - In-situ sector bakeout (nominally for water) must also remove "re-acquired" HC's
 - Interferometer mirror contamination
 - Mitigated by conduction & pumping gradients, distance
- Particulates
 - Constraint on particles falling (or jumping?) through beam
 - Here too, limits are more stringent near optics than in beamtubes
 - Fab, transport, assembly require local cleanroom conditions

V. Leaks: Avoid, Test, Repair

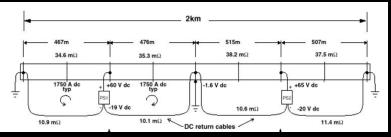
- Leak localization & repair at ET/CE scale is problematic*
- Initial P(leak) << 1 per sector may be necessary
 - Fab to include component-level He MSLD
 - Field joints should include 100% testing
- Means to test full sectors for acquired leaks
 - Post-bake
 - During operational life
- Corrosion Susceptibility
 - Pit Corrosion
 - Stress-corrosion cracking (SCC)
 - Microbial-induced corrosion (MIC)
 - Dependent on site environment
- Fatigue Sensitivity
 - Thermal cycling
 - Bakeout
 - Seismic
- Impact, Abuse, Neglect...
 - System should be REPAIRABLE and RECOVERABLE after accident



*(ask how I know)

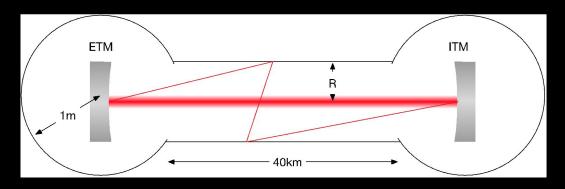
MSLD response vs. time and distance to leak (LIGO-T1200375)

Field weld He leaktest (LIGO/CBI)



VI. Bakeout

- Water (and HC's) must be desorbed after assembly
- Was LIGO recipe (160C / 3 weeks) overkill?
 - o post-bake $Q(H_2O) \sim 10^{-16} \text{ Tl/s/cm}^2$, 10x better than required
 - 80C could simplify insulation and greatly reduce cost
- Baseline: DC electric I²R (Joule) heating
 - ~ 250 kW/km for 160C with 150mm glass wool insulation
 - Cheap, easily installed, non-contaminating, environmentally sound insulation is an unsolved issue
 - DC return requires heavy cables
 - Tube walls > 5mm thick have too little impedance!
- Promising alternates
 - Traveling induction, ultra-dry viscous entrainment (CE/IBEX)
 - Incremental/continuous process could relieve need to pump & heat entire sector as a unit (low instantaneous power)
 - Can work for thick or thin walls
 - Relies on arresting re-adsorption in wake of heating
 - Plasma desorption (ET/MACBETH)
 - May be effective with much less power dissipation, insulation



VII. Beamtube Wall & Baffle Scattering

- Light scatters out of beam, strikes tube wall or baffle, re-scatters into beam
- Circulating IFO field's phase imprinted with mechanical noise of the tube wall
- A sensitive function of tube and baffle diameter
- Depends on parameters that are difficult to bound:
 - Mirror nano-topography (especially at long spatial wavelengths)
 - o Baffle characteristics near grazing incidence
 - Tube support and wall vibration response
 - Ambient noise
- → Optical baffles must be integrated with design
- → Tube wall finish & reflectance may be constrained
- → Tube supports, isolation, mechanical eigenmodes can have dramatic effect
- → Tube diameter is among the first parameters to choose... ...and the most difficult to change later

VII. Light scattering, baffles and vibration (cont'd)

- Tube & baffle optical scatter can in principle drive everything:
 - Minimum tube diameter & straightness
 - Material surface reflectance and texture
 - Integration sequence (baffle installation, alignment)
 - Tube mechanical compliance and eigenmodes
 - Tube support vibration and vibration isolation
- Possible mitigations
 - Preclude stick-slip or autogenous impulses by kinematic design
 - Universal tube support and/or baffle mechanical isolation
 - COSTLY, especially if supports must be frequent
 - "Extreme" local isolation (with restricted aperture)
- Modeling is notoriously difficult!
 - o Depends on unknown/unknowable properties of future mirrors
 - Depends on projections of site seismicity & acoustics
 - o Experimental constraints (e.g., LIGO as-built) have not been straightforward
- Joint understanding of technical risk vs. engineering cost is critical

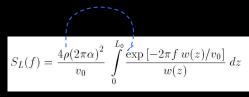
Internal beamtube baffle (LIGO)

This is a top priority for our workshop!

View from 21,000 Feet

Immense progress since we first got together in early 2019! Many difficult problems have been isolated; some are even solved.

We have much more to learn, but can at least see all parts and how they interact.


To forge CE and ET, solutions must contribute to efficient and cohesive system designs.

This workshop is dedicated to sharing complementary expertise and perspectives across disciplines, in order to achieve this synthesis.

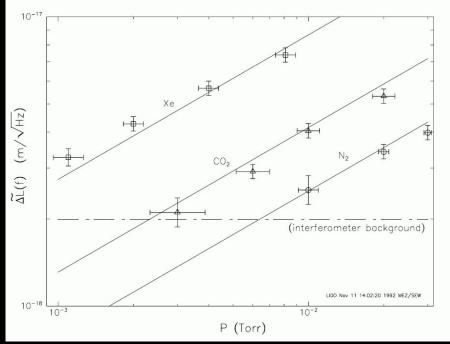
Enjoy the breakout sessions, and thank you for participating!

Residual Gas Scattering

Statistical model verified by interferometer experiment

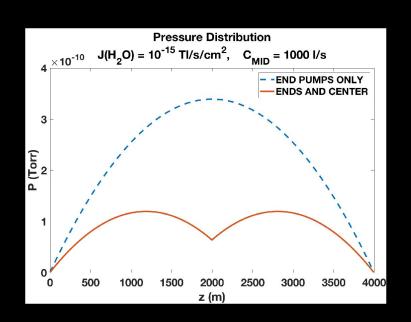
$$\Delta \tilde{L}(f) \equiv \sqrt{S_{\Delta L}(f)} = \sqrt{2S_L(f)}$$

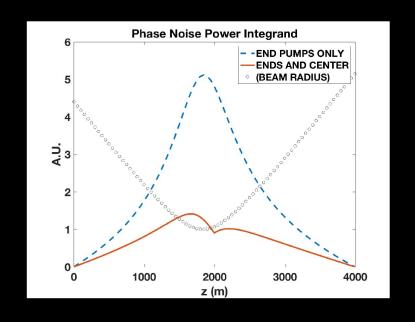
 ρ = gas number density ~ pressure


 α = optical polarizability ~ (index-1)/pressure

w = beam radius

 v_0 = mean thermal speed


 L_0 = arm length


 $\Delta \hat{L}$ = arm optical path difference

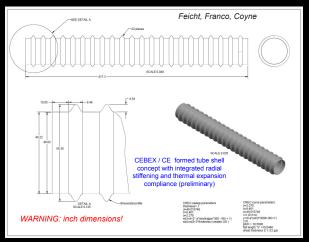
S. Whitcomb and MZ, Proc. 7th Marcel Grossmann Meeting on GR, R. Jantzen and G. Keiser, eds. World Scientific, Singapore (1996).

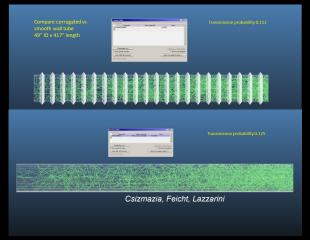
Gaussian laser beam diameter varies → pressure gradients matter

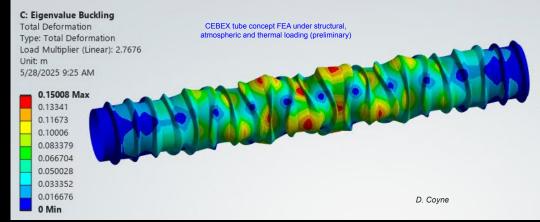
Sample parameters for CE design operating at 1 micron laser wavelength

parameter	aLIGO	CE (1 μm)
<i>L</i> (m)	4,000	40,000
<i>w_o</i> (mm)	62	83
h _{gas} (Hz ^{-1/2})*	< 2 x 10 ⁻²⁵	< 5 x 10 ⁻²⁶
P[H ₂] (Torr)	< 10 ⁻⁹	< 10 ⁻⁹
P[H ₂ O] (Torr)	< 10 ⁻¹⁰	< 10 ⁻¹⁰
P[CO ₂] (Torr)	< 2 x 10 ⁻¹¹	< 2 x 10 ⁻¹¹

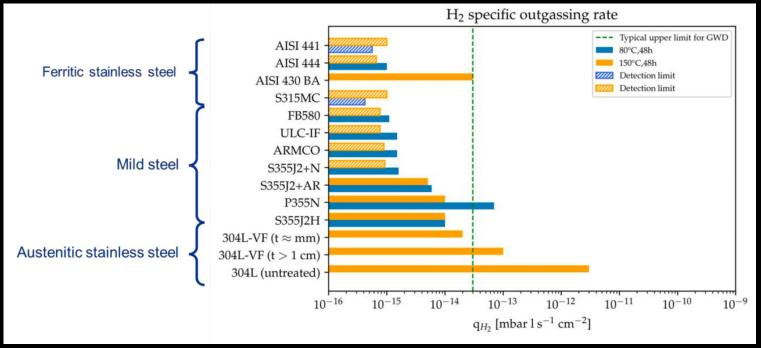
*3x safety margin


Assuming 40km x 1.2m ϕ tubes with 'LIGO-typical' outgassing, e.g., $J(H_2O) \sim 10^{-15}\,T\,I\,s^{-1}\,cm^{-2}$ and with $J(H_2) \sim 5x10^{-14}\,T\,I\,s^{-1}\,cm^{-2}$,


this could be achieved with one 1,000 l/s ion pump deployed each kilometer.



More fun with intermittent corrugations (teaser)



Hydrogen outgassing

C. Scarcia, CERN (2024)