
Thermal insulation for GWDs beam pipe vacuum systems

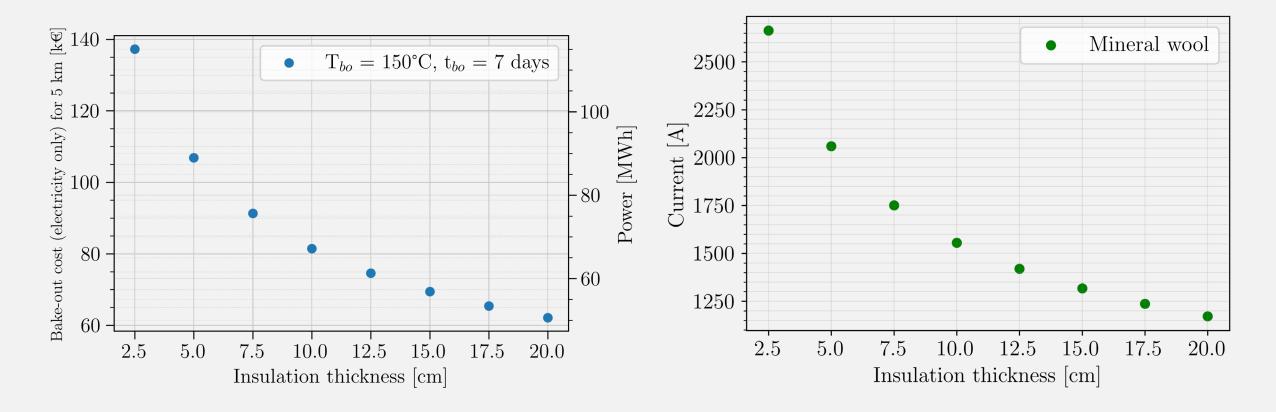
Carlo Scarcia, Karl Owens

BWT3, 2025/10/01

The bakeout of GWD beam pipes

To efficiently bakeout the GWDs beam pipes, we can re-use direct joule effect (beam pipe = conductor).

LIGO bakeout electrical heating power (LIGO-G970071-00-P)


Electrical test of a power supply on an ET corrugated prototype (400 A max)

Why do we need insulation?

Limiting heat losses = limiting needed current = lower costs

The system is foreseen to be baked one, maximum two times over 50 years of operation (150°C max).

 $K_{mineral\ wool}: 3.65E-7\ \Delta T^2+1.44E-4^*\Delta T+4.89E-2\ W\ m^{-1}\ K^{-1},\ \Delta T:\ 130^\circ C\ (150^\circ C-20^\circ C).$ Convection coefficient (h): 5 W m-2 K-1 (calm air, no forced ventilation)

The problem of LIGO and VIRGO approach

Insulation: 15 cm mineral wool (double layer of 7.5 cm) permanently installed.

For ET

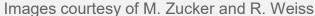
Surface to be covered: ~380.000 m² (120 km)

Cost of insulation (mineral wool 10 - 15 cm): ~48 - 60 €/m²

Total insulation cost [€]: ~ 18 - 23 M €

Other concerns:

Depreciation cost if permanently installed?


Storage?

Sustainability?

Cleanliness and dust generation?

Safety (smoke, fire generation, installation, etc.)?

Some alternative materials to mineral fibers

Aerogel

Thermal Conductivity (λ) Range: 0.015-0.025 W m⁻¹K⁻¹

• Pros

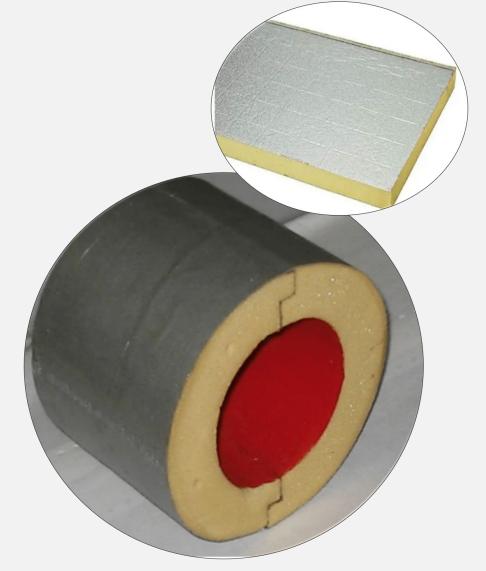
- > Extremely low thermal conductivity
- > Thin
- > Lightweight
- > Hydrophobic
- > Flexible

Cons

- > Expensive
- > Brittle
- > Powdery debris
- Irritant and possibility of respiratory problems

Some alternative materials to mineral fibers

Polyurethanic foam


Thermal Conductivity (λ) Range: 0.02-0.03 W m⁻¹K⁻¹

Pros

- > Very low thermal conductivity
- > Available in various thicknesses
- > Highly durable
- > Lightweight

Cons

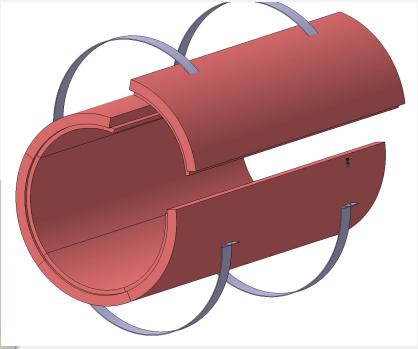
- Sometimes more expensive than fibre-based materials
- Off-gassing
- Lower operating temperature

Development of a new thermal insulation for ET

No explicit requirement from the project (ET). Project developed by CERN and PIEP (PT)

	Target value	Maximum value
Insulation thickness [cm]		10
Form	Reusable shells	
Maximum operating temperature [°C]	400	300
Thermal conductivity k [W m ⁻¹ K ⁻¹] (at 20°C)	< 0.04	< 0.05
Thermal conductivity k [W m ⁻¹ K ⁻¹] (at 150°C)	< 0.05	< 0.06
Reaction to fire (EN 13501-1)	Euroclass A1	Euroclass A2
Smoke production (EN 13501-1)	S1	S1
Droplets generation (EN 13501-1)	D0	D0
Water vapour resistance factor	<1	Not specified

Mechanical properties yet to be determined


Development of a new thermal insulation for ET

Objective of the project: development of sustainable, cheap and inflamable insulation for Einstein Telescope based on:

- Cork + Bio-phenolyc foam
- Fire retardant modified PIR

The material will be castable and made in shells. Installation in ET-PS foreseen for Q3 2026

EINSTEIN TELESCOPE

Degree of flammability	Smoke production	Droplets generation
A1 = non-combustible, No contribution to fire	S1 = Low emission rate and speed	DO = No droplets
A2 = limited combustibility, Very limited contribution to fire	S2 = Medium emission rate and speed	D1 = Limited generation of droplets
B = Combustable, Limited contribution to fire	S3 = High emission rate and speed	D2 = Not classified
C = Combustable, Minor contribution to fire		
D = Combustable, Medium contribution to fire		
E = Combustable, High contribution to fire		
F = Combustable, Easily flammable		

Source: KNAUF insulation

