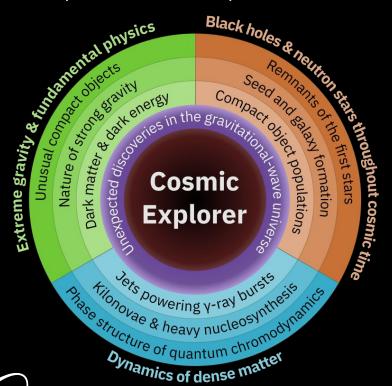
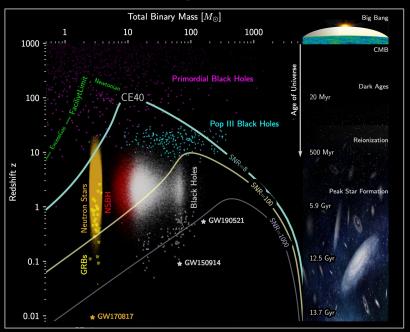
Cosmic Explorer Status



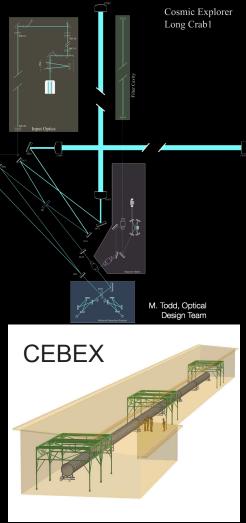
COSMIC EXPLORER

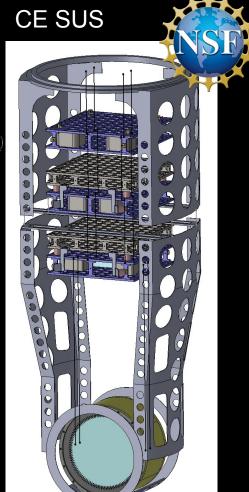
Matthew Evans for the CE Project


Artist's concept of Cosmic Explorer by Andrew Jenkins, Cal State Fullerton

A Horizon Study for Cosmic Explorer: Science, Observatories, and Community

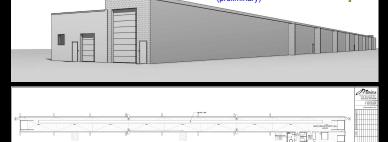
Cosmic Explorer: A Submission to the NSF MPSAC ngGW Subcommittee


https://arxiv.org/abs/2306.13745

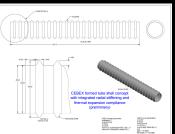

CE Activity

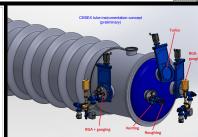
Many efforts ongoing:

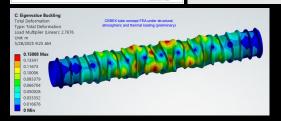
- Science Traceability Matrix
- Site evaluation: completed national search, visiting regions, developing relationships
- CE Beamtube Experiment (CEBEX)
- Stray light mitigation
- Optical design and thermal compensation
- Vibration isolation and suspension design
- Lasers and squeezers
- Gravity gradient noise mitigation
- Project and Design Execution Plans
- Improved observatory costing
- Improved optical coatings
- ..



Cosmic Explorer Beamtube EXperiment (CEBEX)


Courtesy of Mike Zucker


- NSF mission: qualify scalable, fast, low-cost UHV beamtubes for CE
 - Material, surface science, fabrication, welding, assembly, leaktest, bakeout, instrumentation
 - Generate CE reference design and cost book
 - 120m I. x 1.24m Ø prototype beamtube platform (possibly multiple design variants)
 - New 11,400 ft² (1,063 m²) lab facility near LIGO Hanford Y midstation
 - Complementary collaboration with ET Pilot Sector program, now in progress at CERN
- CEBEX laboratory facility
 - Architectural and engineering design is over 50% complete
 - Selecting builder in October, target occupancy by summer '26
- Prototype tube design
 - Baseline RFI circulated to industrial fabricators:
 - Corrugation-stiffened 304L, ~ 2mm wall; inspired by GEO600 and CERN designs
 - Flared radial flange or formed socket field joints
 - I²R sector bakeout (similar to LIGO and Virgo)
 - Targeting fabricator selection by late winter
 - Options/variants under parallel study
 - Discrete stiffeners & expansion joints (like LIGO and Virgo)
 - Alternative UHV construction materials
 - Ferritic SS (CERN)
 - Carbon steel (LIGO Lab)
 - Sleeved or butt-welded field joints
 - Traveling induction bake with ultra-dry viscous flow scrubbing
- CEBEX team is growing!
 - o Tube engineering: Coyne, Franco, Iudintseva, Lazzarini, Sanchez
 - Civil & facility engineering: Gately, Guidry, McCarthy
 - PM: Richards, Hill, Hansen
 - Co-Pl's: Csizmazia, Feicht, Zucker*



CEBEX laboratory at LHO

artist's conception

*contact zucker@caltech.edu for info

Workshop at LHO in one week

neXt-Generation Collaborative Design (XGCD)

- ET-CE technical discussion on topics of common interest
- Several topics discussed so far: Optical Design, Straylight mitigation, Lasers and Laser Noise couplings, Seismic Isolation and Sensors, Suspension design, ...
- Next topic: Squeezing (October 20, 11am ET)

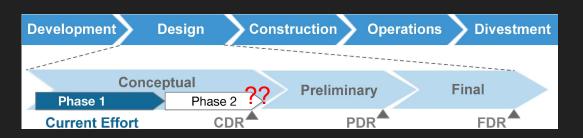
NeXt Generation Collaborative Design

https://indico.gssi.it/e/xgcd

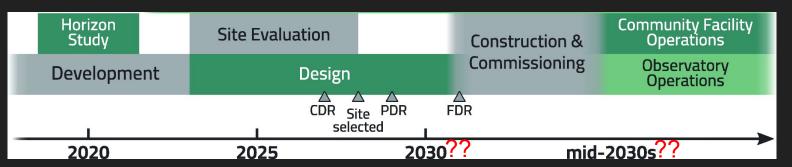
Monday Apr 22, 2024, 11:00 AM → 12:40 PM US/Eastern

Organized by Jan Harms and Lisa Barsotti

🚹 Jan Harms (Gran Sasso Science Institute) , Lisa Barsotti (MIT)


Description The goal of this series of online meetings is to provide a forum for regular discussions between the teams that work on common design aspects of next-generation gravitational-wave detectors Einstein Telescope and Cosmic Explorer.

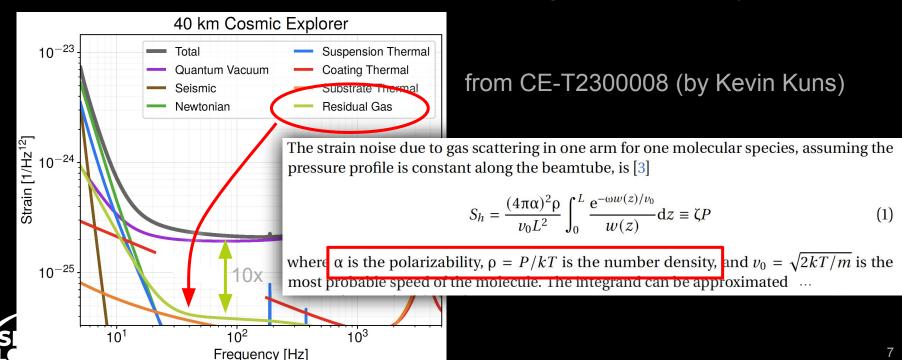
The plan is to have a meeting each 2-3 months and start with topics that are more urgent, i.e., that have a strong impact on the detector infrastructure including optical layout, stray-light noise, Newtonian noise, ...



Cosmic Explorer Timeline

Project progress

- Conceptual Design (3+years)
- Preliminary Design ~\$75M (2-3 years)
- Final Design ~\$100M (2 years)
- Construction ~\$1-2B (5 years)
- Operations ~\$60M / year (50 years?)
- Decommissioning/Divestment



CE Vacuum Requirements - Motivations

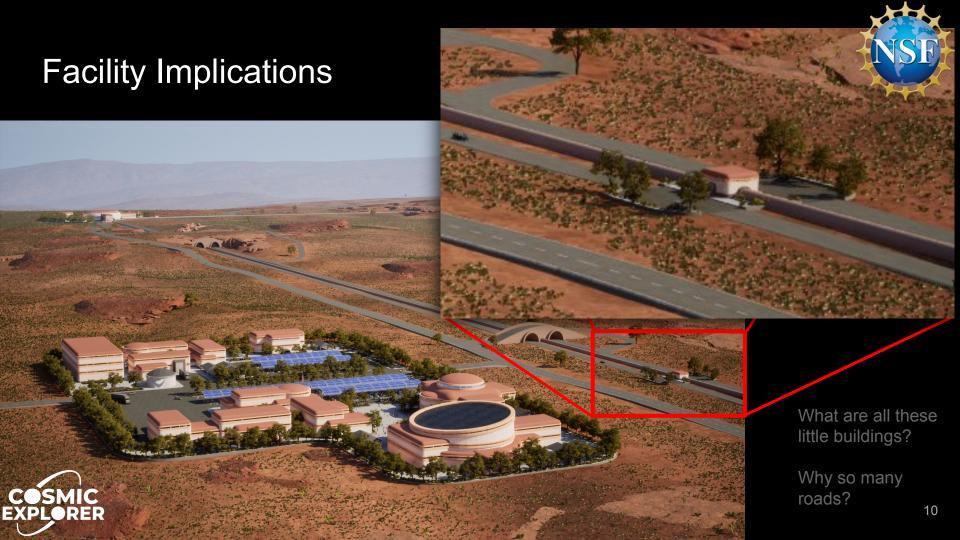
This is from a detector point of view... I know nothing about vacuum systems!

CE Vacuum Requirements - Numbers!

	Beamtubes		Chambers	
Species	Req / torr	Goal / torr	Req / torr	Goal / torr
Не	1.3×10^{-9}	3.4×10^{-10}	8.8×10^{-10}	7.9×10^{-11}
H_2	3.3×10^{-10}	8.3×10^{-11}	3.1×10^{-9}	2.8×10^{-10}
Ne	1.8×10^{-10}	4.5×10^{-11}	3.9×10^{-10}	3.5×10^{-11}
H_2O	3.0×10^{-11}	7.6×10^{-12}	1.0×10^{-9}	9.4×10^{-11}
O_2	2.1×10^{-11}	5.3×10^{-12}	7.8×10^{-10}	7.0×10^{-11}
N_2	1.9×10^{-11}	4.7×10^{-12}	8.3×10^{-10}	7.5×10^{-11}
Ar	6.7×10^{-12}	1.7×10^{-12}	2.8×10^{-10}	2.5×10^{-11}
CO	5.8×10^{-12}	1.4×10^{-12}	3.3×10^{-10}	3.0×10^{-11}
CH_4	4.8×10^{-12}	1.2×10^{-12}	4.4×10^{-10}	4.0×10^{-11}
CO_2	2.8×10^{-12}	6.9×10^{-13}	2.7×10^{-10}	2.4×10^{-11}
Xe	6.3×10^{-13}	1.6×10^{-13}	1.5×10^{-10}	1.4×10^{-11}
$100 \mathrm{uH}_n \mathrm{C}_m$	8.9×10^{-14}	2.2×10^{-14}	1.8×10^{-10}	1.6×10^{-11}
$200 \mathrm{uH}_n \mathrm{C}_m$	1.7×10^{-14}	4.2×10^{-15}	1.2×10^{-10}	1.1×10^{-11}
$300 \text{ u H}_n \text{C}_m$	6.2×10^{-15}	1.5×10^{-15}	1.0×10^{-10}	9.2×10^{-12}
$400 \mathrm{uH}_n \mathrm{C}_m$	3.1×10^{-15}	7.6×10^{-16}	8.8×10^{-11}	7.9×10^{-12}
$500 \mathrm{uH}_n\mathrm{C}_m$	1.7×10^{-15}	4.3×10^{-16}	7.9×10^{-11}	7.1×10^{-12}
$600 \mathrm{uH}_n\mathrm{C}_m$	1.1×10^{-15}	2.8×10^{-16}	7.2×10^{-11}	6.5×10^{-12}

from CE-T2300008 (by Kevin Kuns)

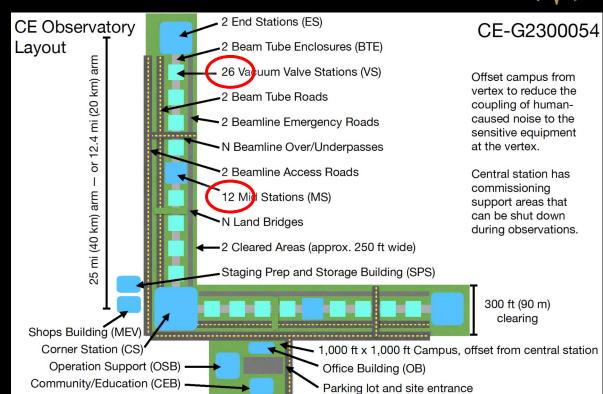
2			
Species	Mass / kg	Polarizability / m ³	$lpha/lpha_{ m H_2}(m/m_{ m H_2})^{1/4}$
Не	6.64×10^{-27}	2.08×10^{-31}	0.31
Ne	3.35×10^{-26}	3.81×10^{-31}	0.86
H_2	3.35×10^{-27}	7.87×10^{-31}	1.00
H_2O	2.99×10^{-26}	1.50×10^{-30}	3.29
O_2	5.31×10^{-26}	1.56×10^{-30}	3.96
N_2	4.65×10^{-26}	1.71×10^{-30}	4.19
Ar	6.63×10^{-26}	1.66×10^{-30}	4.45
CO	4.64×10^{-26}	1.95×10^{-30}	4.78
CH_4	2.66×10^{-26}	2.45×10^{-30}	5.23
CO_2	7.31×10^{-26}	2.51×10^{-30}	6.89
Xe	2.18×10^{-25}	4.01×10^{-30}	14.47
$100 \mathrm{uH}_n\mathrm{C}_m$	1.66×10^{-25}	1.14×10^{-29}	38.43
$200 \mathrm{uH}_n\mathrm{C}_m$	3.32×10^{-25}	2.21×10^{-29}	88.60
$300 \text{ u H}_n \text{C}_m$	4.98×10^{-25}	3.29×10^{-29}	145.97
400 u H $_n$ C $_m$	6.64×10^{-25}	4.36×10^{-29}	207.87
$500 \mathrm{uH}_n\mathrm{C}_m$	8.30×10^{-25}	5.49×10^{-29}	276.76
$600 \mathrm{uH}_n\mathrm{C}_m$	9.96×10^{-25}	6.54×10^{-29}	345.07



Stray light in the Tubes

One clear implication of having a very long, very thin, hole in the air is that a few photons might go astray and bounce off the walls. Others will have a lot to say about this, so I'll move on...

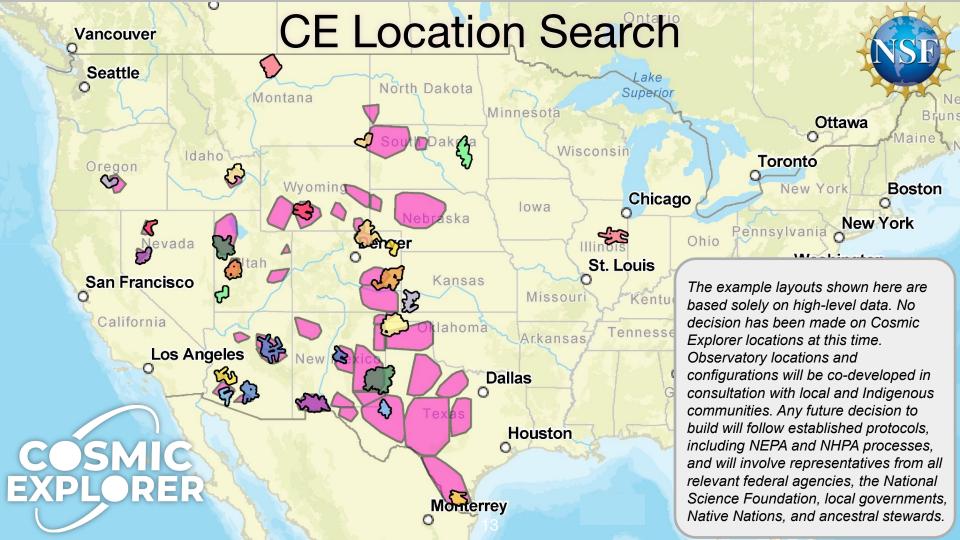
Facility Implications


Pump ports every 250m? 300+ access points (with power? enlarged enclosure?).

Valves every 2km?
38 buildings to support them!

A few suspended baffles? More/bigger buildings.

Parallel installation teams? 80km of roads (how wide?).



The Message

- We're looking forward to stability at the NSF
 - And a path for CE to continue as a NSF major facility project
- We are collaborating with ET on multiple topics (Vacuum, optical design, ... XGCD!)
- The CE vacuum system is roughly one third of the observatory cost... so, **several hundred million** dollars!

Thank you for attending - I'm happy to take questions!

