

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T2500372-v1 Advanced LIGO 4 November 2025

Fast Digital Servo: Timing Diagrams

Daniel Sigg

Distribution of this document: LIGO Scientific Collaboration

This is an internal working note of the LIGO Laboratory.

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125

Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

P.O. Box 1970
Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

Massachusetts Institute of Technology LIGO Project – NW22-295 185 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

P.O. Box 940
Livingston, LA 70754
Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

1 Overview

This document shows proposed timing diagrams to communicate with the converters in the fast digital servo board. The main clock is assumed to be 2^{28} Hz (or roughly 268 MHz), which is derived from the 2^{26} Hz timing clock through the help of a PLL.

2 ADAQ23876 and ADAQ23878 ADCs

These ADCs have an LVDS interface that can be clocked at rates up to 400 MHz. Since we are using two lanes to transfer the data a 134MHz clock frequency is sufficient.

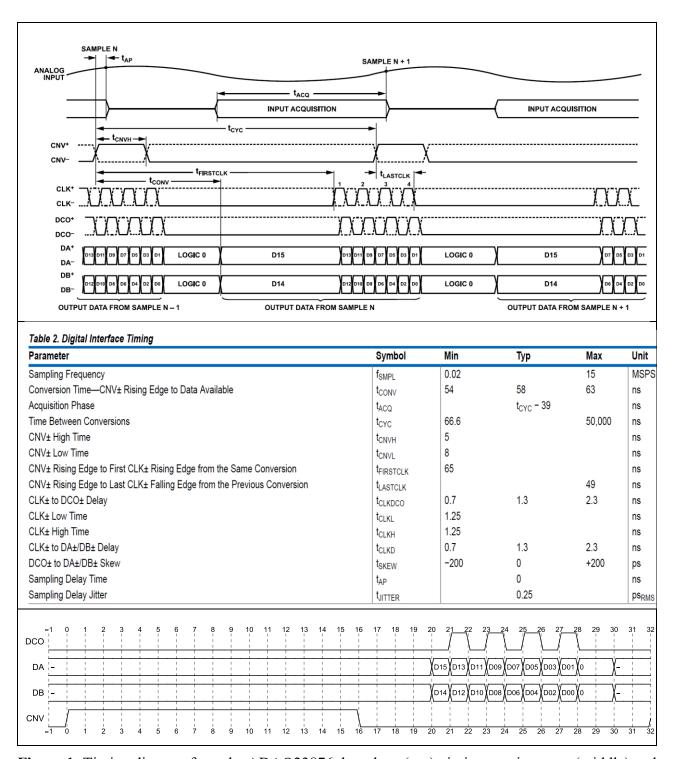
See Figure 1 for the ADAQ23876, and figure 2 for the ADAQ23878.

A full conversion plus readout takes 32 cycles and supports a 2²³ Hz (8.4 MHz) conversion clock.

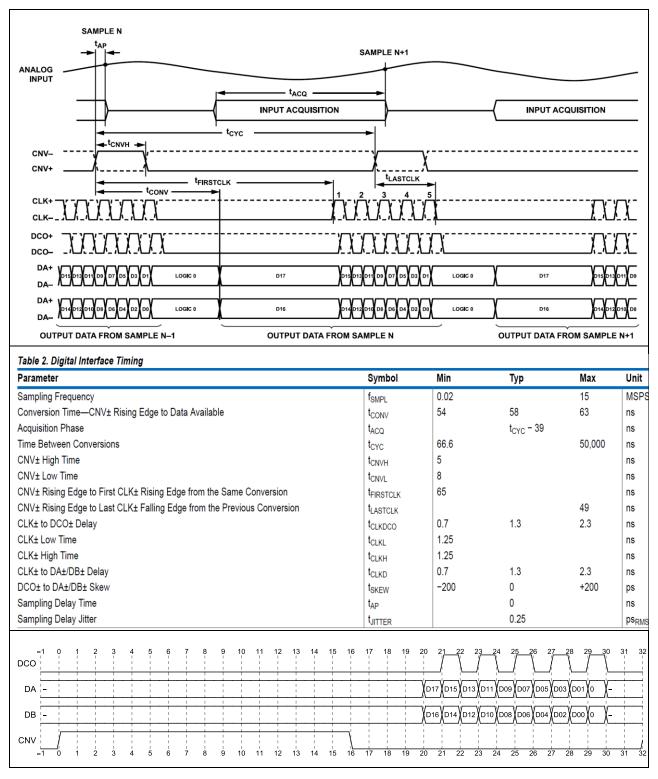
3 AD3551R and AD3552R

These DACs have quad SPI interface that can be clocked at rates up to 66 MHz. This is slightly lower than a 2²⁶ Hz (67.1 MHz) clock, which means that we cannot easily support the AD3552R in a non-streaming mode unless we run the interface 1.6% faster than recommended. For the AD3551R we can use 6 clock cycles at 268 MHz for one SPI clock cycle which results in a 44.7 MHz SPI clock.

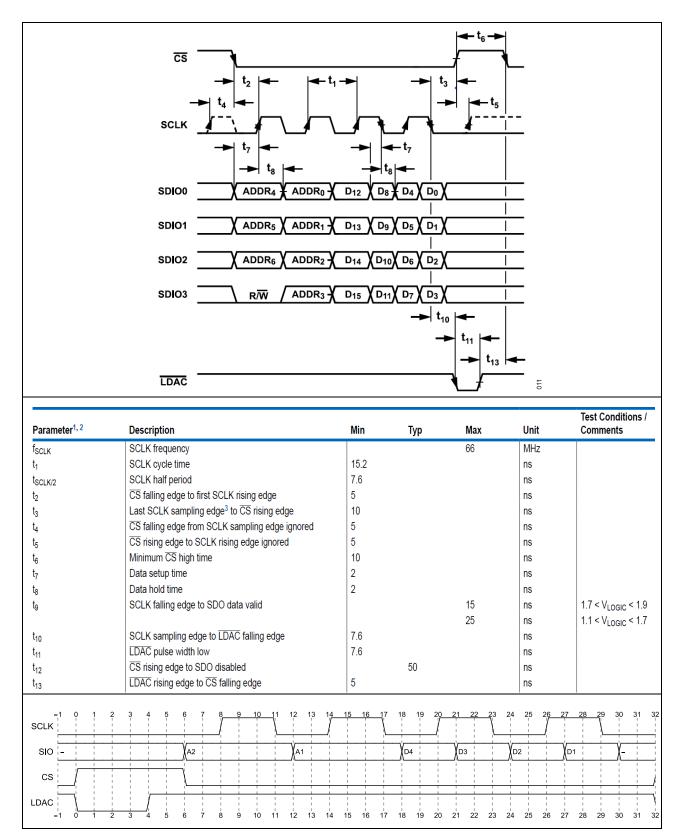
See Figure 3 for the AD3551R, and figure 4 for the AD3552R.

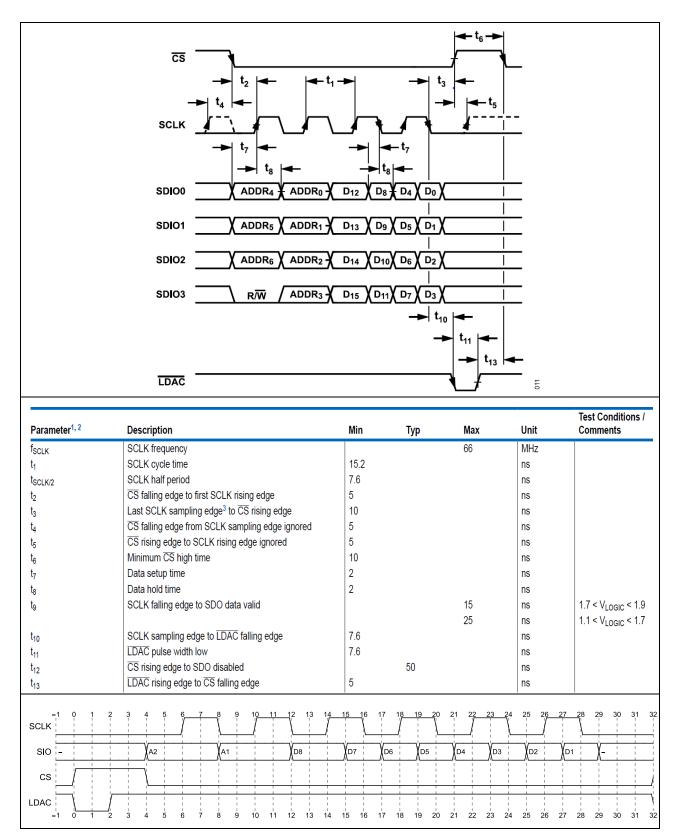

A full conversion plus readout takes 32 cycles and supports a 2²³ Hz (8.4 MHz) conversion clock when the AD3552R is operated at 67.1 MHz. In principle, it is possible to run these devices in streaming mode that does not require a full address/data cycle but instead keeps sending the data only. This would allow the AD3552R to meet the timing requirements but could result in prolonged invalid data outputs if a SPI cycle is ever missed.

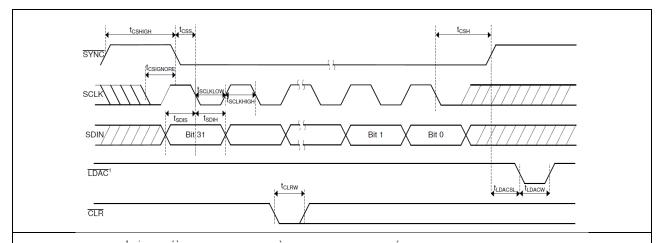
4 DAC11001B

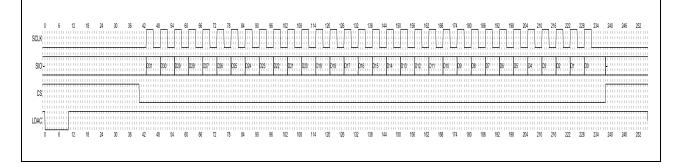

These DACs have SPI interface that can be clocked at rates up to 50 MHz assuming DV_{DD} is 5V and IOV_{DD} is 3.3V. Since 32 bits need to be transmitted per conversion cycle, we can support a 2^{20} Hz (1 MHz) sampling clock for the precision DAC.

See Figure 5 for the DAC11001B timing diagram.


We again use 6 clock cycles at 268 MHz for one SPI clock cycle resulting in a 44.7 MHz SPI clock. Since this interface is single lane, without DDR and requires 32-bits per cycle, we can support a 2^{20} Hz (1 MHz) sampling clock. With a reduced IOV_{DD} at 2.5V or 1.8V we would have to half the sampling clock.


Figure 1: Timing diagram from the ADAQ23876 data sheet (top), timing requirements (middle) and proposed FPGA timing.


Figure 2: Timing diagram from the ADAQ23878 data sheet (top), timing requirements (middle) and proposed FPGA timing.


Figure 3: Timing diagram from the AD3551R data sheet (top), timing requirements (middle) and proposed FPGA timing.

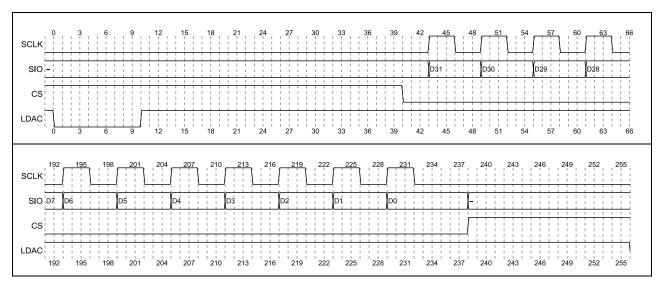


Figure 4: Timing diagram from the AD3552R data sheet (top), timing requirements (middle) and proposed FPGA timing. Notice the slight timing violation.

		MIN	NOM	MAX	UNIT
f _{SCLK}	SCLK frequency, 1.7 V ≤ IOV _{DD} < 2.7 V			33	MHz
	SCLK frequency, 2.7 V ≤ IOV _{DD} ≤ 5.5 V			50	IVIHZ
^t sclkHigh	SCLK high time, 1.7 V ≤ IOV _{DD} < 2.7 V	15			ns
	SCLK high time, 2.7 V ≤ IOV _{DD} ≤ 5.5 V	10			
t _{sclkLow}	SCLK low time, 1.7 V ≤ IOV _{DD} < 2.7 V	15			no
	SCLK low time, 2.7 V ≤ IOV _{DD} ≤ 5.5 V	10			ns
t _{SDIS}	SDI setup, 1.7 V ≤ IOV _{DD} < 2.7 V	13			ns
	SDI setup, 2.7 V ≤ IOV _{DD} ≤ 5.5 V	8			
t _{SDIH}	SDI hold, 1.7 V ≤ IOV _{DD} < 2.7 V	13			ns
	SDI hold, $2.7 \text{ V} \leq \text{IOV}_{\text{DD}} \leq 5.5 \text{ V}$	8			
t _{css}	SYNC falling edge to SCLK falling edge, 1.7 V ≤ IOV _{DD} < 2.7 V	23			ns
	SYNC falling edge to SCLK falling edge, 2.7 V ≤ IOV _{DD} ≤ 5.5 V	18			
t _{сsн}	SCLK falling edge to \$\overline{\text{SYNC}}\$ rising edge, 1.7 V ≤ IOV _{DD} < 2.7 V	15			
	SCLK falling edge to \$\overline{\text{SYNC}}\$ rising edge, 2.7 V ≤ IOV _{DD} ≤ 5.5 V	10			ns
t _{сsні} дн	SYNC high time, 1.7 V ≤ IOV _{DD} < 2.7 V	55			no
	SYNC high time, 2.7 V ≤ IOV _{DD} ≤ 5.5 V	50			ns
t _{CSIGNORE}	SCLK falling edge to SYNC ignore, 1.7 V ≤ IOV _{DD} < 2.7 V	10			no
	SCLK falling edge to SYNC ignore, 2.7 V ≤ IOV _{DD} ≤ 5.5 V	5			ns
t _{LDACSL}	Synchronous update: SYNC rising edge to LDAC falling edge, 1.7 V ≤ IOV _{DD} < 2.7 V	50			
	Synchronous update: SYNC rising edge to LDAC falling edge, 2.7 V ≤ IOV _{DD} ≤ 5.5 V	50			ns
t _{LDACW}	LDAC low time, 1.7 V ≤ IOV _{DD} < 2.7 V	20			
	LDAC low time, 2.7 V ≤ IOV _{DD} ≤ 5.5 V	20			ns
t _{CLRW}	CLR low time, 1.7 V ≤ IOV _{DD} < 2.7 V	20			ns
	CLR low time, 2.7 V ≤ IOV _{DD} ≤ 5.5 V	20			

Figure 5: Timing diagram from the DAC11001B data sheet (top), timing requirements (second) and proposed FPGA timing (full acquisition cycle, zoomed in at start of acquisition cycle and end of acquisition cycle).