

LIGO 32 Channel Low Noise ADC

Marc Pirello & Daniel Sigg

E2300322

Outline

- History
 - LIGO Timing Board (completed and installed post Covid 2022)
 - LIGO DAC (completed and installed for O5 2026)
 - LIGO ADC (prototype hell)
 - LIGO FDS (future)
- Prototype
 - Layout Issues
 - Current Issues
 - Heat Issues aka Space Heater Issues

History

- LIGO Timing Board
 - Simplified design for legacy Duotone board.
 - Completed 2020, deployed along with V5 IO Chassis.
- LIGO DAC
 - Increased channel density, massive cost reduction over COTS boards.
 - Completed 2025, deployed LHO for O5 2026.
- LIGO ADC
 - Improved performance, cost reduction over COTS boards.
 - Completed 2026, production 2026.
- LIGO FDS
 - Required to improve bandwidth of common mode servo.
 - Prototype Spring 2026

Production Timing Board

- The timing board is required to propagate site GPS timing to the LIGO DAC and LIGO ADC boards.
- This allows the LIGO DAC and LIGO ADC to phase lock with the site, using the same 2^n timing as the site, and reducing low frequency products from unlocked drifting clocks.
- The timing board paired with the DAC and ADC boards allow these boards to keep their own microsecond timing.

Production LIGO DAC Results

- Noise performance of the LIGO DAC at 100 Hz is typically less than 200nV/rtHz, 1kHz is less than 100nV/rtHz.
- Channel density replaces 4 of the 20 bit DACS with one of the LIGO DACS. This allows more flexibility in IO chassis deployment.
- Cost of the LIGO DAC is \$2500 for 32 channels compared to \$10k for 8 channels, or \$40k for 32 channels.

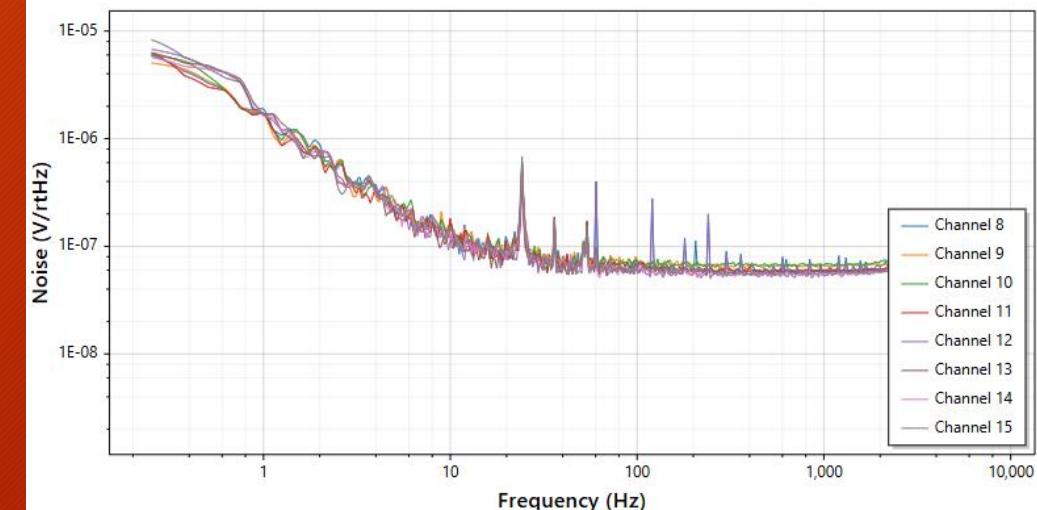
Measure DAC Noise
Measure noise of DAC with constant output

Date: 03 February 2026 14:56:03

Engineer:

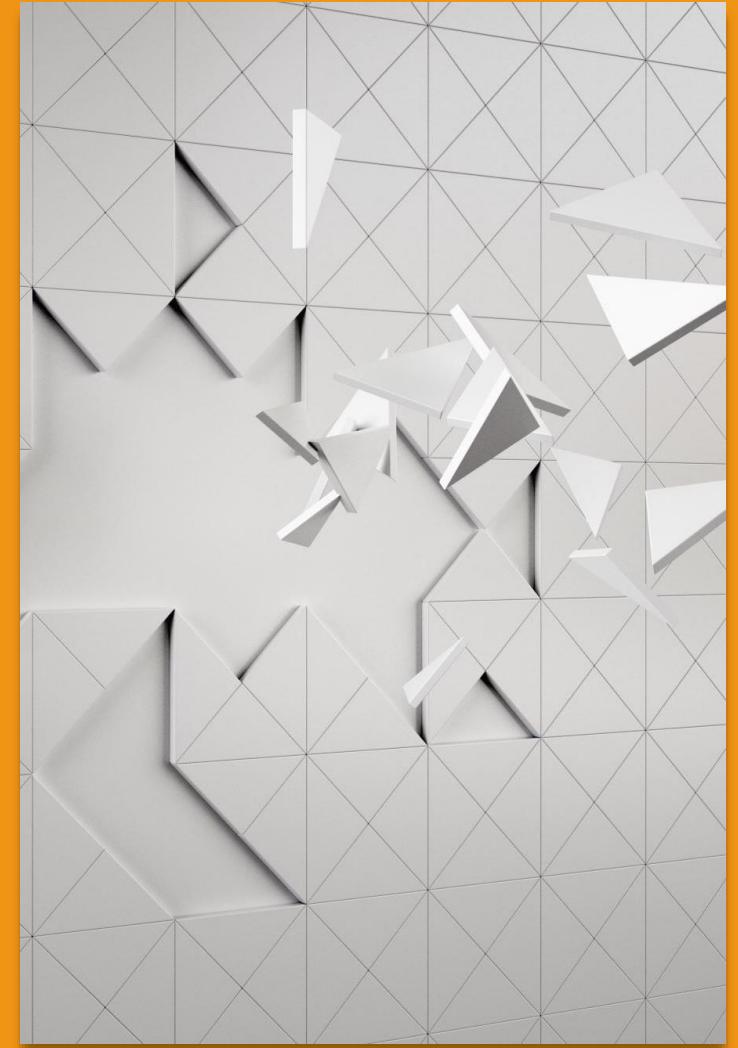
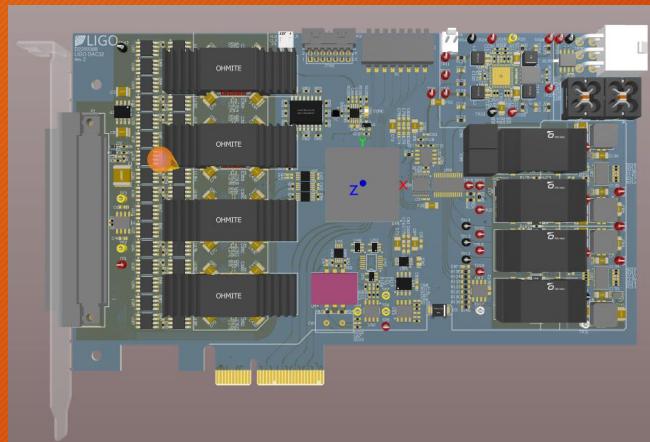
DUT: D2200368-v2

Serial: S2500000-v1

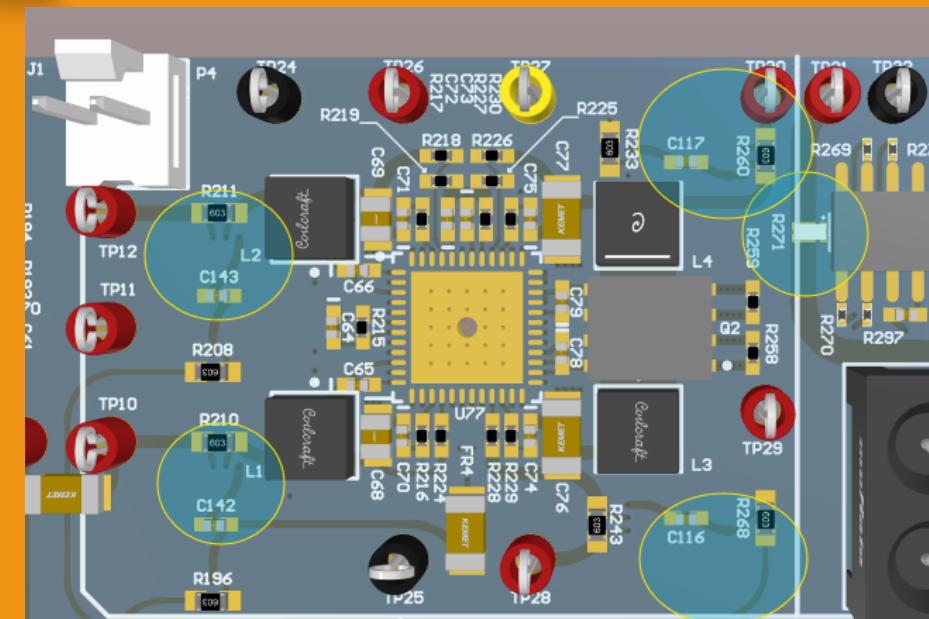
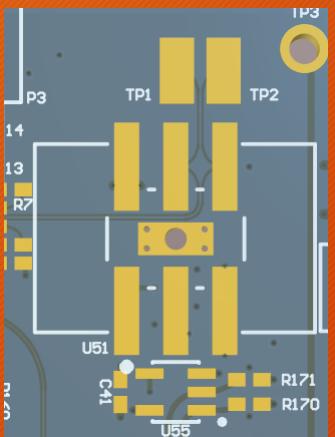

Set DAC outputs to: 8.0000V

DAC noise measurement requirements Freq 100 Hz, Noise < 200 nV/rtHz, Freq 1000 Hz, Noise < 100 nV/rtHz

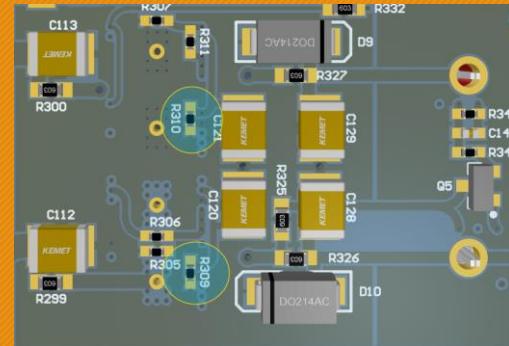
DAC Noise Measurement Results:



Channel 0: Freq 100 Hz, Noise	73 nV/rtHz,	Freq 1000 Hz, Noise	63 nV/rtHz
Channel 1: Freq 100 Hz, Noise	78 nV/rtHz,	Freq 1000 Hz, Noise	63 nV/rtHz
Channel 2: Freq 100 Hz, Noise	74 nV/rtHz,	Freq 1000 Hz, Noise	57 nV/rtHz
Channel 3: Freq 100 Hz, Noise	68 nV/rtHz,	Freq 1000 Hz, Noise	55 nV/rtHz
Channel 4: Freq 100 Hz, Noise	95 nV/rtHz,	Freq 1000 Hz, Noise	63 nV/rtHz
Channel 5: Freq 100 Hz, Noise	159 nV/rtHz,	Freq 1000 Hz, Noise	62 nV/rtHz
Channel 6: Freq 100 Hz, Noise	104 nV/rtHz,	Freq 1000 Hz, Noise	67 nV/rtHz
Channel 7: Freq 100 Hz, Noise	89 nV/rtHz,	Freq 1000 Hz, Noise	58 nV/rtHz
Channel 8: Freq 100 Hz, Noise	72 nV/rtHz,	Freq 1000 Hz, Noise	63 nV/rtHz
Channel 9: Freq 100 Hz, Noise	73 nV/rtHz,	Freq 1000 Hz, Noise	65 nV/rtHz
Channel 10: Freq 100 Hz, Noise	74 nV/rtHz,	Freq 1000 Hz, Noise	66 nV/rtHz
Channel 11: Freq 100 Hz, Noise	69 nV/rtHz,	Freq 1000 Hz, Noise	64 nV/rtHz
Channel 12: Freq 100 Hz, Noise	67 nV/rtHz,	Freq 1000 Hz, Noise	59 nV/rtHz
Channel 13: Freq 100 Hz, Noise	69 nV/rtHz,	Freq 1000 Hz, Noise	59 nV/rtHz
Channel 14: Freq 100 Hz, Noise	68 nV/rtHz,	Freq 1000 Hz, Noise	60 nV/rtHz
Channel 15: Freq 100 Hz, Noise	66 nV/rtHz,	Freq 1000 Hz, Noise	59 nV/rtHz
Channel 16: Freq 100 Hz, Noise	76 nV/rtHz,	Freq 1000 Hz, Noise	63 nV/rtHz
Channel 17: Freq 100 Hz, Noise	80 nV/rtHz,	Freq 1000 Hz, Noise	69 nV/rtHz
Channel 18: Freq 100 Hz, Noise	73 nV/rtHz,	Freq 1000 Hz, Noise	58 nV/rtHz
Channel 19: Freq 100 Hz, Noise	69 nV/rtHz,	Freq 1000 Hz, Noise	59 nV/rtHz
Channel 20: Freq 100 Hz, Noise	75 nV/rtHz,	Freq 1000 Hz, Noise	64 nV/rtHz
Channel 21: Freq 100 Hz, Noise	71 nV/rtHz,	Freq 1000 Hz, Noise	58 nV/rtHz
Channel 22: Freq 100 Hz, Noise	77 nV/rtHz,	Freq 1000 Hz, Noise	67 nV/rtHz
Channel 23: Freq 100 Hz, Noise	71 nV/rtHz,	Freq 1000 Hz, Noise	55 nV/rtHz
Channel 24: Freq 100 Hz, Noise	87 nV/rtHz,	Freq 1000 Hz, Noise	63 nV/rtHz
Channel 25: Freq 100 Hz, Noise	97 nV/rtHz,	Freq 1000 Hz, Noise	72 nV/rtHz
Channel 26: Freq 100 Hz, Noise	86 nV/rtHz,	Freq 1000 Hz, Noise	60 nV/rtHz
Channel 27: Freq 100 Hz, Noise	82 nV/rtHz,	Freq 1000 Hz, Noise	59 nV/rtHz
Channel 28: Freq 100 Hz, Noise	85 nV/rtHz,	Freq 1000 Hz, Noise	63 nV/rtHz
Channel 29: Freq 100 Hz, Noise	85 nV/rtHz,	Freq 1000 Hz, Noise	57 nV/rtHz
Channel 30: Freq 100 Hz, Noise	92 nV/rtHz,	Freq 1000 Hz, Noise	64 nV/rtHz
Channel 31: Freq 100 Hz, Noise	85 nV/rtHz,	Freq 1000 Hz, Noise	55 nV/rtHz

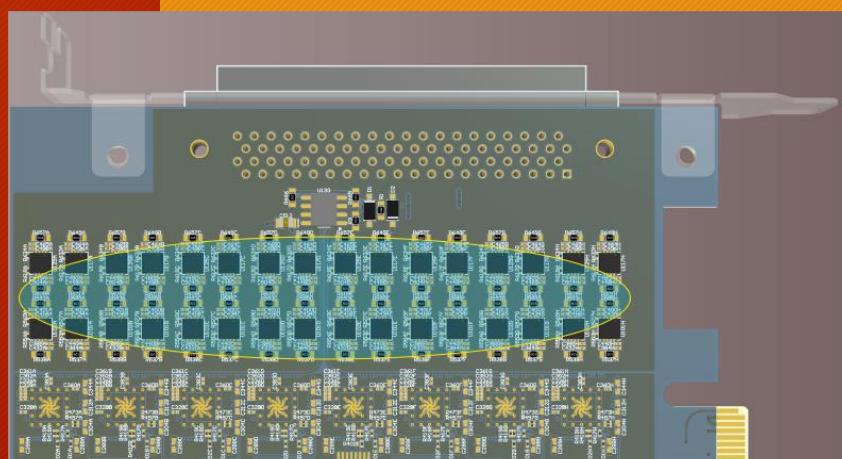
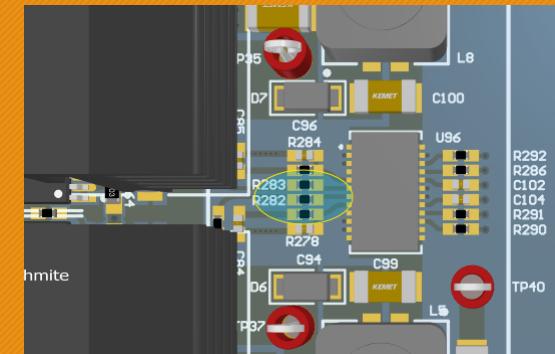
DAC noise measurement passed



Prototype

- Many solutions were common between the DAC and ADC.
- Problems solved on the DAC propagate to solutions on the ADC, and vice versa.
- With the full production of the DAC, the ADC benefits from all of the lessons learned on the DAC.



Prototype - Layout Issues



- Current Sensors were all wrong on the original DAC and that issue propagated to the ADC. In the production DAC these issues were solved, and this solution has been implemented on the ADC.
- Pads were fixed on the ADC to allow more VCXO options for locking phase, SI-TIME.

Prototype - Current Issues

- Initial current draw for the stock ADC was 2A at 12V, we were not ready for this and the power dissipation was not sufficient, this caused lots of heat, see next slide.
- We reduced the +/- 15V rails to +/-12.5V then finally to +/-11.2V which is sufficient margin for the front end opamp rails. We also reduced the +4V supply to +2.5V further reducing current loss. These two changes reduced current draw by 250mA.
- Swapping the OPA1612 out with the ADA4084-2 reduced the current by another 500mA, putting us at parity with the DAC current draw.
- COM reference front end supply from +11.2V to +5V further reduces current by 110ma. This is a 4.096V reference will run fine on +5V.

Prototype - Heat Issues

- The stock LIGO ADC was hot. Daniel called it a space heater.
- By reducing current we have solved the heat issue. We also found better FPGA heatsinks from Radian which are more affordable and that conform to the PCIe space requirements.
- The fully upgraded ADC board measured 57.1C after many hours of testing in an enclosed IO chassis, matching the production DAC for heat generation.

Results

Measure ADC Noise
Measure noise of ADC with constant input

Date: 03 February 2026 15:06:38

Engineer:

DUT: D2200368-v2

Serial: S2500000-v1

Set DAC outputs to: 8.0000V

ADC noise measurement requirements Freq 100 Hz, Noise < 300 nV/VHz, Freq 1000 Hz, Noise < 200 nV/VHz

ADC Noise Measurement Results:

Channel 0: Freq 100 Hz, Noise	188 nV/VHz	Freq 1000 Hz, Noise	165 nV/VHz
Channel 1: Freq 100 Hz, Noise	185 nV/VHz	Freq 1000 Hz, Noise	167 nV/VHz
Channel 2: Freq 100 Hz, Noise	185 nV/VHz	Freq 1000 Hz, Noise	166 nV/VHz
Channel 3: Freq 100 Hz, Noise	186 nV/VHz	Freq 1000 Hz, Noise	165 nV/VHz
Channel 4: Freq 100 Hz, Noise	186 nV/VHz	Freq 1000 Hz, Noise	173 nV/VHz
Channel 5: Freq 100 Hz, Noise	183 nV/VHz	Freq 1000 Hz, Noise	169 nV/VHz
Channel 6: Freq 100 Hz, Noise	190 nV/VHz	Freq 1000 Hz, Noise	174 nV/VHz
Channel 7: Freq 100 Hz, Noise	185 nV/VHz	Freq 1000 Hz, Noise	167 nV/VHz
Channel 8: Freq 100 Hz, Noise	191 nV/VHz	Freq 1000 Hz, Noise	172 nV/VHz
Channel 9: Freq 100 Hz, Noise	184 nV/VHz	Freq 1000 Hz, Noise	171 nV/VHz
Channel 10: Freq 100 Hz, Noise	191 nV/VHz	Freq 1000 Hz, Noise	175 nV/VHz
Channel 11: Freq 100 Hz, Noise	193 nV/VHz	Freq 1000 Hz, Noise	172 nV/VHz
Channel 12: Freq 100 Hz, Noise	177 nV/VHz	Freq 1000 Hz, Noise	167 nV/VHz
Channel 13: Freq 100 Hz, Noise	179 nV/VHz	Freq 1000 Hz, Noise	169 nV/VHz
Channel 14: Freq 100 Hz, Noise	183 nV/VHz	Freq 1000 Hz, Noise	166 nV/VHz
Channel 15: Freq 100 Hz, Noise	178 nV/VHz	Freq 1000 Hz, Noise	164 nV/VHz
Channel 16: Freq 100 Hz, Noise	183 nV/VHz	Freq 1000 Hz, Noise	167 nV/VHz
Channel 17: Freq 100 Hz, Noise	187 nV/VHz	Freq 1000 Hz, Noise	168 nV/VHz
Channel 18: Freq 100 Hz, Noise	183 nV/VHz	Freq 1000 Hz, Noise	165 nV/VHz
Channel 19: Freq 100 Hz, Noise	185 nV/VHz	Freq 1000 Hz, Noise	163 nV/VHz
Channel 20: Freq 100 Hz, Noise	190 nV/VHz	Freq 1000 Hz, Noise	168 nV/VHz
Channel 21: Freq 100 Hz, Noise	184 nV/VHz	Freq 1000 Hz, Noise	166 nV/VHz
Channel 22: Freq 100 Hz, Noise	179 nV/VHz	Freq 1000 Hz, Noise	166 nV/VHz
Channel 23: Freq 100 Hz, Noise	173 nV/VHz	Freq 1000 Hz, Noise	164 nV/VHz
Channel 24: Freq 100 Hz, Noise	175 nV/VHz	Freq 1000 Hz, Noise	158 nV/VHz
Channel 25: Freq 100 Hz, Noise	168 nV/VHz	Freq 1000 Hz, Noise	159 nV/VHz
Channel 26: Freq 100 Hz, Noise	180 nV/VHz	Freq 1000 Hz, Noise	160 nV/VHz
Channel 27: Freq 100 Hz, Noise	179 nV/VHz	Freq 1000 Hz, Noise	161 nV/VHz
Channel 28: Freq 100 Hz, Noise	181 nV/VHz	Freq 1000 Hz, Noise	165 nV/VHz
Channel 29: Freq 100 Hz, Noise	183 nV/VHz	Freq 1000 Hz, Noise	168 nV/VHz
Channel 30: Freq 100 Hz, Noise	192 nV/VHz	Freq 1000 Hz, Noise	164 nV/VHz
Channel 31: Freq 100 Hz, Noise	179 nV/VHz	Freq 1000 Hz, Noise	161 nV/VHz

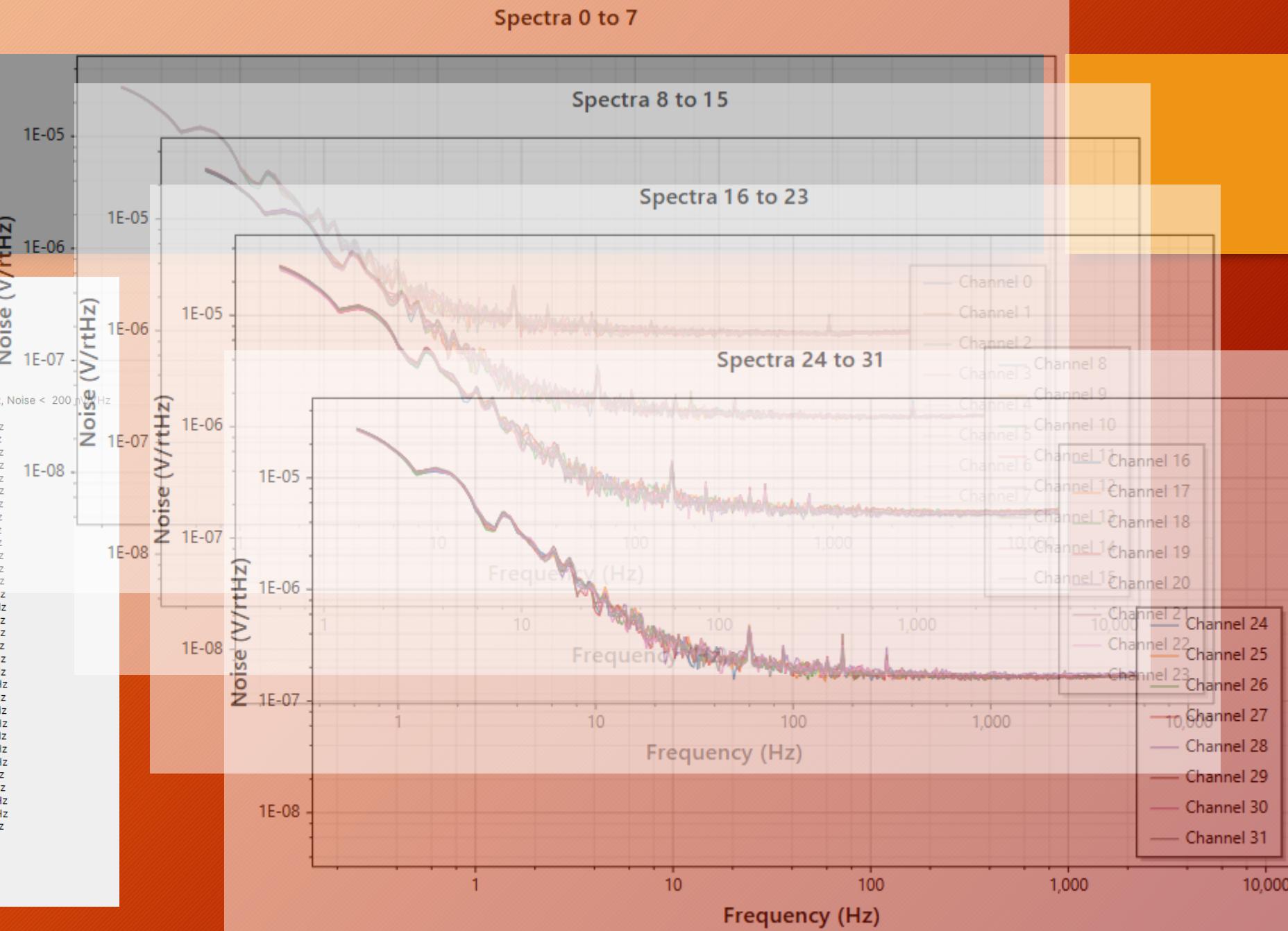

ADC noise measurement passed

Figure01: Spectra 0 to 7

Figure02: Spectra 8 to 15

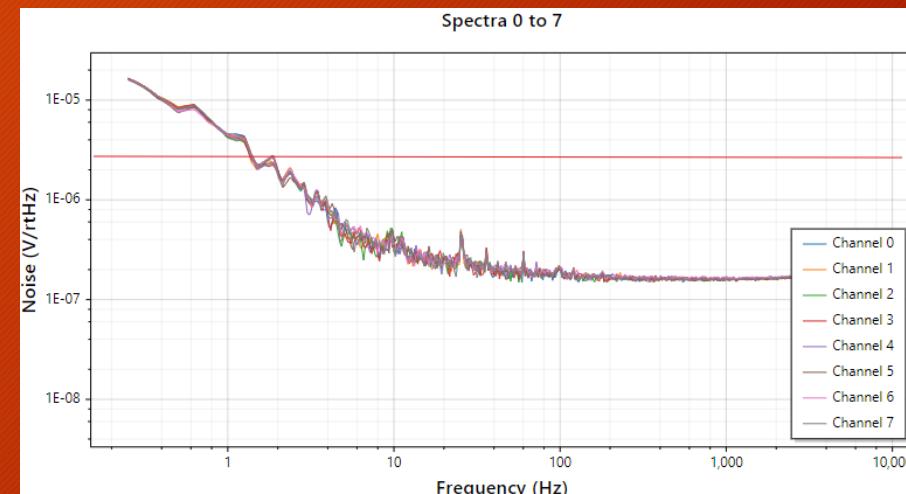
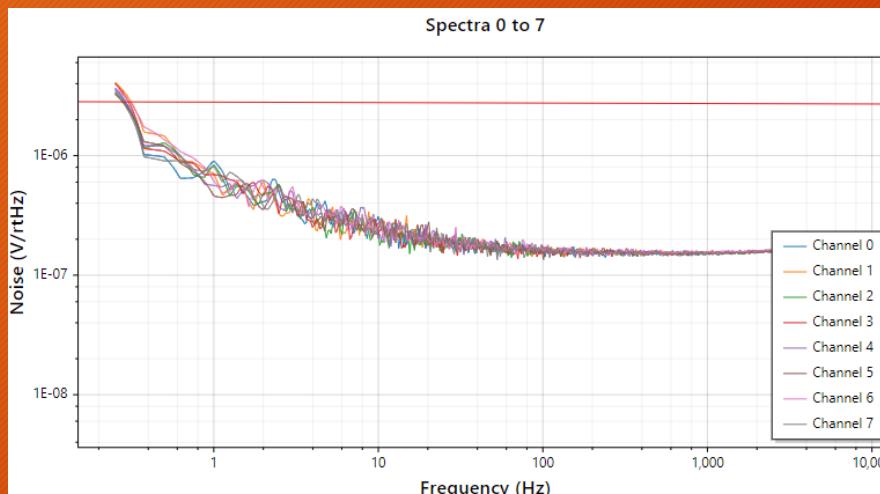


Figure03: Spectra 16 to 23

Figure04: Spectra 24 to 31

Results Discussion - Daniel Notes

- The GS PCI66-16AI64SSA noise measures at 4uV/rtHz at 100Hz with small input signal
- The LIGO AD32 ADC noise measures at 200nV/rtHz at 100Hz with small input signal.
- Left is 0V input signal, Right is 10V input signal

