LIGO Document P1500162-v2

Improving gravitational-wave parameter estimation using Gaussian process regression

Document #:
LIGO-P1500162-v2
Document type:
P - Publications
Other Versions:
Abstract:
Folding uncertainty in theoretical models into Bayesian parameter estimation is necessary in order to make reliable inferences. A general means of achieving this is by marginalising over model uncertainty using a prior distribution constructed using Gaussian process regression (GPR). As an example, we apply this technique to the measurement of chirp mass using (simulated) gravitational-wave signals from binary black holes that could be observed using advanced-era gravitational-wave detectors. Unless properly accounted for, uncertainty in the gravitational-wave templates could be the dominant source of error in studies of these systems. We explain our approach in detail and provide proofs of various features of the method, including the limiting behaviour for high signal-to-noise, where systematic model uncertainties dominate over noise errors. We find that the marginalised likelihood constructed via GPR offers a significant improvement in parameter estimation over the standard, uncorrected likelihood both in our simple one-dimensional study, and theoretically in general. We also examine the dependence of the method on the size of training set used in the GPR; on the form of covariance function adopted for the GPR, and on changes to the detector noise power spectral density.
Files in Document:
Notes and Changes:
Published version
Journal References:
Published in Phys Rev D vol. 93 pg. 064001.
Publication Information:
http://arxiv.org/abs/1509.04066

DCC Version 3.5.0, contact DCC Help