LIGO Document T2300266-v2
- The LIGO-Virgo-KAGRA collaboration provides low-latency (near-real time) localization using the signal-to-noise ratio measured for a single point in the search parameter space. Parameter estimation pipelines subsequently samples the full parameter space to obtain more accurate estimates of the localization. However, this process is computationally expensive. The multi-messenger detection of the binary neutron star merger GW170817 confirmed the need for accurate and fast data products. Some detection pipelines utilize singular value decomposition to reduce the filtering cost. This project uses machine learning to input signal-to-noise ratios from singular value decomposition time-series into simulation-based inference (SBI), a likelihood-free inference algorithm, which outputs a posterior with an accurate parameter estimation, such as a sky map, to localize compact binary coalescences and infer other source properties.
DCC Version 3.5.0, contact
DCC Help