LIGO Document P1200011-v6
- Paper for the Proceedings of the 24th ASME Conference on Mechanical Vibration and Noise.
Abstract: The control bandwidth and performance of active vibration isolation systems are usually directly related to the system dynamic characteristics. In this paper, we present results from a 4 years study carried out to improve the dynamical response and control performance on the two-stage isolator designed for Advanced LIGO detectors. The paper will focus on the platform’s first stage to illustrate prototyping, optimization, final design and the experimental results obtained during this program. The system concept, architecture and prototype will be presented. The factors initially limiting the prototype’s performance will be analyzed. Solutions based on sensors relocation, payload reduction, structural stiffening and passive techniques to damp the residual high frequency flexible modes will be presented. Experimental results obtained with the prototype will be compared with the system’s final version. The series of improvement obtained help not only to increase the system’s bandwidth, robustness and performance but also to simplify and speed up the control commissioning, which is very important for the Advanced LIGO project that will be using 5 of these platforms in each of its 3 detectors.
DCC Version 3.5.0, contact
DCC Help